HygroTherm

Version 1.1

Präzisions-Hygrometer-Thermometer

In Ermangelung ausreichender Präzision bei Hygrometern und Thermometern entstand der Bedarf ein eigenes präzises Hygrometer und Thermometer selbst zu bauen.

> Lonsee im April des Corona-Jahres 2020 Updated 2022-05-2011

Markus Fulde

Finkenweg 3 D-89173 Lonsee Telefon +49 (7336) 92 11 89 Fax +49 (7336) 92 10 68 Mobil +49 (160) 84 54 314

E-Mail Markus.Fulde@t-online.de

1 Inhaltsverzeichnis

1	Inhal	Inhaltsverzeichnis					
2	Abbil	Abbildungsverzeichnis					
3	Tabel	llenverzeichnis	6				
4	Schal	tbilderverzeichnis	7				
5	Softw	vareverzeichnis	8				
7	Allge	meines	10				
	7.1	Die Entwicklungsumgebung					
	7.2	Allgemeine Beschreibung und Idee zur Realisierung					
	7.3	Leistungsumfang	11				
	7.4	Funktionskomponenten	12				
8	Elekt	ronische Grundlagen	13				
	8.1	Mikrokontroller ATmega16-16PU					
	8.2	Ressourcenzuordnung ATmega16 im Projekt HygroTherm					
	8.3	Interrupt-Vektor-Tabelle ATmega16					
	8.4	Basisbeschaltung eines ATmega16 inkl. Display					
Κι	rzhubtas	ter 6x6mm, Hohe: 4,3mm, 12V, vertikal					
	8.5	ISP-Schnittstelle / ISP-Programmierung					
	8.5.1	ISP Programmierinterface von ATMEL					
	8.5.2	AVR ISP MKII unter Windows 10 mit BASCOM					
	8.6	Irace- bzw. Debug-Schnittstelle					
	8.6.1	KS232- I raceschnittstelle					
	8.6.4	FIDI Friend + extra - VI.U UAKI-USB-Bridge					
	8.6.5	FIDI SERIAI I IL-232 USB Cable					
	δ./ 0.0	AVR Fuse Kenfiguration ATmosp1(
	0.01	AVR Fuse Konfiguration von Hyger Thorm					
	0.0.1	Crundlegen gun Spannung EV. Veg und VDD					
0	0.9	Grunulagen zur Spannung 5V, VCC und VDD					
9		Hauntschelter	02 20				
	0.2	Spannungsvorsorgung					
	9.2	I CD - Display					
	9.5	BASCOM Beisnielcode für die Displayansteuerung (Funktionshihliothek)					
	932	Prototyn I.CD-Display-Ansteuerung					
	94	Miniaturlüfter	51				
	95	Temperatur – und Luftfeuchtigkeitssensor Sensirion SHT85	52				
	951	Allgemeines zur Temperatur- und Feuchtigkeitsmessung					
	952	Beschaltung des Sensirion SHT85 Sensors	54				
	953	Wichtige Informationen und Notizen zum SHT85	55				
	9.5.4	BASCOM Treiber und Beispielcode für den SHT85					
	9.6	LED-Zuordnung Schaltplan					
10	Mech	nanik					
11	Baute	eile und Bauteilbeschaffung					
12	Hard	ware	63				
	12.1	Festlegung von Netzklassen im Projekt	63				
	12.2	Die PCB zum Projekt HygroTherm	65				
	12.2.	1 Schematic	65				
	12.2.	2 Layout, Layer und Bestückung	67				
	12.2.	3 Eagle-BOM					
	12.2.	4 Das Board	71				
	12.3	Die fertige Hardware	73				
13	Softw	vare	74				
	13.1	Systemfestlegungen und Definitionen	74				
	13.1.	1 Timer Festlegungen	74				
	13.2	Verwendete SW	74				
	-						

14.1	Bücher und Literatur	
14.2	Internet	
14.2	.1 Firmen und Foren	
14.2	.2 ATmega SW und HW-Lösungen	
14.2	.3 Foren	91
15 Entw	vicklungsbegleitende Notizen und Informationen	93
15.1	Projektcheckliste für AVR Systemdesigns	93
15.1	.1 Abblockkondensator(en) ordnungsgemäß installiert?	
15.1	.2 Spannungsversorgung richtig angeschlossen?	
15.1	.3 Reset-Pin korrekt beschaltet?	
15.1	.4 Alle Ground-Anschlüsse beschaltet?	94
16 Date	enblätter	
16.1	FTDI Serial TTL-232 USB Cable	
16.2	Mini USB Typ B liegend 5-polig WR-COM Buchse, Einbau horizontal WR-COM Würth E	lektronik 96
16.3	Miniatur-Lüfter	
16.4	Temperatur und Luftfeuchtigkeitssensor Sensirion SHT85	
16.5	LCD Display ERM1602-6 Series – HD44780	

2 Abbildungsverzeichnis

Abbildung 1: Entwicklungsumgebung für das Projekt HygroTherm	10
Abbildung 2: Das fertig aufgebaute Projekt HygroTherm in Betrieb	11
Abbildung 3: Erstinbetriebnahme des Sensors mit ATmega16 auf einem Breadboard	13
Abbildung 4: Die ersten Messwerte des Sensors auf dem Display	13
Abbildung 5: PINOut ATmega16 PDIP	14
Abbildung 6: PINOut ATmega16L TQFP	14
Abbildung 7: PINOut ATmega16 PDIP	15
Abbildung 8: Installation erfolgreich und Funktion gegeben, INF Datei und Installer erzeugt	22
Abbildung 9: mkII erfolgreich im Gerätemanager installiert	22
Abbildung 10: Einstellungen für den AVRISP mkII in BASCOM	22
Abbildung 11: RS232-Traceadapter	25
Abbildung 12: FTDI Friend + Extras - v1.0	26
Abbildung 13: Layout des FTDI Friend	27
Abbildung 14: FTDI Serial TTL-232 USB Cable	28
Abbildung 15: FTDI Serial TTL-232 USB Cable Datenblatt	28
Abbildung 16: FTDI Serial TTL-232 USB Cable Detailansichten	29
Abbildung 17: Fusebits im AVR Studio	33
Abbildung 18: Hauptschalter	38
Abbildung 19:LCD HD44780 1602 16x2 - Bild 1	40
Abbildung 20:LCD HD44780 1602 16x2 - Bild 2	40
Abbildung 21: Prototyp LCD-Display-Ansteuerung mit Breadboard	51
Abbildung 22: 9.5 Temperatur – und Luftfeuchtigkeitssensor Sensirion SHT8	53
Abbildung 23: Das I2C Interface zum SHT85	54
Abbildung 24: Die PIN-Zuordnung des SHT85	54
Abbildung 25: Platine des HygroTherm	58
Abbildung 26: 2 Lasergeschnittene Plexiglasplatten als Gehäuseteile	58
Abbildung 27: Die bestückte Platine	59
Abbildung 28: Das fertige Gerät	59
Abbildung 29: MS Visio Gehäusezeichnung für plexilaser	60
Abbildung 30: Definition der Netzklassen	63
Abbildung 31: Demoboard Netzklassen	64
Abbildung 32: PCB HygroTherm – Layout gesamt	67
Abbildung 33: PCB HygroTherm – Top Layer	67
Abbildung 34: PCB HygroTherm – Bottom Layer	68
Abbildung 35: PCB HygroTherm – Bestückung Top Layer	68
Abbildung 36: PCB HygroTherm – Pads und Vias	69
Abbildung 37: PCB HygroTherm – Restricted Areas	69
Abbildung 38: PCB HygroTherm TOP	71
Abbildung 39: PCB HygroTherm BOTTOM	71
Abbildung 40: PCB TOP fertig bestückt	72
Abbildung 41: Die fertige Platine	73

3 Tabellenverzeichnis

Tabelle 1: Historie	9
Tabelle 2: Stückliste CPU-Unit ATmega16	14
Tabelle 3: Ressourcenzuordnung ATmega16	16
Tabelle 4: Interrupt-Vektor-Tabelle ATmega16	17
Tabelle 5: Interrupt-Vektor-Tabelle ATmega16	17
Tabelle 6: Stückliste Basisbeschaltung ATmega16	19
Tabelle 7: Kurzhubtaster für RESET	20
Tabelle 8: ISP connection PINOut	20
Tabelle 9: PIN-Belegung des seriellen RS232-Ports	23
Tabelle 10: PIN-Belegung der 9-poligen RS232 Stecker/Buchse	24
Tabelle 11: Stückliste RS232-Adapter zwischen PIN-Header und D-SUB9 Buchse PC	24
Tabelle 12: PIN-Belegung RS232-Pfostensteckers	25
Tabelle 13: Ressourcenzuordnung SW-RS232 für den ATmega16	25
Tabelle 14: Fuse High Byte ATmega16	35
Tabelle 15: Extended Fuse Byte ATmega16	35
Tabelle 16: AVR-Studio – Interface Settings	35
Tabelle 17: AVR-Studio – Tool Information	35
Tabelle 18: AVR-Studio – Device Information	36
Tabelle 19: AVR-Studio – Oscillator calibration	36
Tabelle 20: AVR-Studio - Memories	36
Tabelle 21: AVR-Studio – Fuses	36
Tabelle 22: AVR-Studio – Lock Bits	36
Tabelle 23: AVR-Studio – Production file	36
Tabelle 24: Vorgeschriebene Namensgebung für Spannungsversorgungen	37
Tabelle 25: Stückliste Basisbeschaltung ATmega16	41
Tabelle 26: Ressourcenzuordnung ATmega16 für LCD-Display	42
Tabelle 27: Pinbelegung des HD44780 LCD-Display	42
Tabelle 28: Befehlsübersicht des HD44780 LCD-Displays	43
Tabelle 29: Bedeutung der Steuerbits beim HD44780 LCD-Displays	43
Tabelle 30: Miniatur-Lüfter	51
Tabelle 31: Bauteile für LED-Ansteuerung	53
Tabelle 32: Ressourcenzuordnung ATmega16 für den Lüfter	53
Tabelle 33: Bauteile für LED-Ansteuerung	55
Tabelle 34: Ressourcenzuordnung ATmega16 für den SHT85	55
Tabelle 35: LED-Zuordnung Schaltplan	56
Tabelle 36: Bauteile für LED-Ansteuerung	57
Tabelle 37: Ressourcenzuordnung für LED-Ansteuerung	57
Tabelle 38: Bauteile – Firma Aisler	61
Tabelle 39: Bauteile – Firma Aisler	61
Tabelle 40: Bauteile – ebay	61
Tabelle 41: Bauteile – Firma Mouser	61
Tabelle 42: Bauelemente Amazon	61
Tabelle 43: Bauelemente Reichelt Elektronik	62
Tabelle 44: Bauelemente Conrad Electronic	62
Tabelle 45: Eagle BOM für das Projekt HygroTherm	70
Tabelle 46: Weitere Bauteile für das Projekt HygroTherm	70

4 Schaltbilderverzeichnis

Schaltbild 1: Der Schaltplan des Projekts als Basisbeschaltung mit ATmega16	19
Schaltbild 2: 10-Pin ISP connection PINOut	21
Schaltbild 3: Adapter zwischen PIN-Header und D-SUB9 Buchse	24
Schaltbild 4: Schaltplan des Adafruit FTDI Friend	27
Schaltbild 5: Symbolfestlegung für Spannungsversorgungen	
Schaltbild 6: Schematische Basisbeschaltung des LCD-Displays an einem ATmega8	41
Schaltbild 7: Display Helligkeits- und Kontrastregelung	44
Schaltbild 8: Beschaltung des Lüfters	52
Schaltbild 9: Die Beschaltung des SHT85 im Projekt	55
Schaltbild 10: Beschaltung LED's	56
Schaltbild 11: Schaltbild für Definition von Netzklassen	63
Schaltbild 12: Schaltbild HygroTherm - Sheet 1	65
Schaltbild 13: Schaltbild HygroTherm - Sheet 2	66
Schaltbild 14: Schaltbild HygroTherm - Sheet 3	66

5 Softwareverzeichnis

Software 1: Code zur Ansteuerung des LCD-Displays	50
Software 2: Source-Code des Projekt HygroTherm	87

6 Historie

Datum	Entscheidung			
22.02.2020	Beginn der Projektarbeit und Dokumenterstellung			
22.02.2020	Fertigstellung des Projekts und Dokumentations-Restarbeiten			
24.04.2020	Beginn der Gesamtdokumentation			
25.04.2020	Fertigstellung der Gesamtdokumentation (wie üblich würde im Nachgang dokumentiert 🌚)			
11.05.2022	Erstellung V1.1			
	Kapitel "Die Fuse-Konfiguration von HygroTherm" korrigiert und angepasst			

Tabelle 1: Historie

7 Allgemeines

7.1 <u>Die Entwicklungsumgebung</u>

Die Entwicklungsumgebung meiner Elektronikprojekte:

Abbildung 1: Entwicklungsumgebung für das Projekt HygroTherm

7.2 Allgemeine Beschreibung und Idee zur Realisierung

In meiner Wohnung tummeln sich einige gekaufte Thermometer und Hygrometer. Interessanter Weise zeigen alle Geräte unterschiedliche Angaben mit teils riesigen Abweichungen, selbst dann, wenn sie direkt nebeneinanderstehen.

Dabei waren Abweichungen von teilweise 20% relative Luftfeuchtigkeit zwischen den Geräten, wie auch 5 $^{\circ}$ C zu beobachten.

Diese Beobachtung führte nicht zu meiner Zufriedenheit. Ich stellte mir die Frage; was stimmt denn nun eigentlich.

Und so kam ich auf die Idee ein eigenes präzises Thermometer mit Hygrometer zu bauen. Bei Recherchen im Internet stieß ich auf den Sensor SHT85 von Sensirion. Da ich die Vorgängermodelle SHT71 und SHT75 bereits kannte und verwendete, entschied ich mich für die Umsetzung eines eigenen Geräts mit eben diesem Sensor.

Eine weitere neue Projektidee war geboren und wurde als kleines Zwischenprojekt zu meiner eigentlich geplanten großen Wetterstation XL eingeschoben und innerhalb weniger Tage realisiert. Dabei fällt mir auf, dass die Nachdokumentation des Projekts mehr Aufwand verursacht, als das Projekt selbst.

7.3 Leistungsumfang

im Folgenden wird der Leistungsumfang und die Teilfunktionalität beschrieben welche HygroTherm besitzt und dem Benutzer zur Verfügung stellt:

- AVR ATmega16-16PU mit internem 8 MHz Clock
- Hauptschalter
- LCD--Display mit 16x2 Zeichen und blauer Hintergrundbeleuchtung
 - Anzeige Startbildschirm
 - Anzeige Statusbytes des SHT85
 - o Betriebsanzeige von Temperatur und Luftfeuchtigkeit
- Spannungsversorgung via 5V USB-Mini Typ B Stecker
- Schnittstellen
 - o FTDI Friend kompatible Schnittstelle zum Tracing via USB zu PC
 - ISP Schnittstelle zur direkten Programmierung des Targets
- Reset-Taster
- LED's für Betriebs-Anzeigen (Power und Alive)
- Miniatur-Lüfter um den Sensor mit ausreichend Frischluft zu versorgen

Abbildung 2: Das fertig aufgebaute Projekt HygroTherm in Betrieb

7.4 <u>Funktionskomponenten</u>

Das Projekt HygroTherm verfügt über die folgenden einzelnen Funktions- / Teilkomponenten:

•	Spannungsversorgung via 5V USB	SUP
•	Zentraler Hauptschalter für Spannungsversorgung	Switch
•	Mikrocontroller ATmega16-16PU (inkl. ISP, UART und Reset)	ATMEGA
•	UART / FTDI Trace-Schnittstelle	TRACE
•	LCD-Display HD44780 1602 LCD 2x16	LCD
•	LCD-Hintergrundbeleuchtung, Power-LED und Alive-LED	LED
•	Miniatur-Lüfter	FAN
•	Sensirion Temperatur- und Luftfeuchtigkeitssensor SHT85	SHT
•	Reset-Taster	RESET

8 Elektronische Grundlagen

8.1 <u>Mikrokontroller ATmega16-16PU</u>

Im Projekt HygroTherm wird der ATmega16-16PU mit einer Betriebsspannung von 5V betrieben, welche über den USB-Anschluss gewonnen wird.

Im Projekt wird der Mikrokontroller ATmega16 von ATMEL mit einem internen Takt von 8MHz eingesetzt.

Erste Inbetriebnahmen und Versuche bzgl. Projektumsetzung wurden mit dem ATmega16 auf eine Breadboard realisiert.

Abbildung 3: Erstinbetriebnahme des Sensors mit ATmega16 auf einem Breadboard

Abbildung 4: Die ersten Messwerte des Sensors auf dem Display

PINOut ATmega16:

PINOut ATmega16 PDIP

PINOut ATmega16 TQFP

Abbildung 5: PINOut ATmega16 PDIP

Bauteile:

Stückliste: CPU-Unit ATmega16-16PU					
Halbleiter					
IC1	ATMEL ATmega16 RISC CPU				

Tabelle 2: Stückliste CPU-Unit ATmega16

8.2 Ressourcenzuordnung ATmega16 im Projekt HygroTherm

Abbildung 7: PINOut ATmega16 PDIP

PIN	Port	Fun	ktion	Used	Beschreibung	Definition
1	PB0	ХСК/Т	ГО	J	ALIVE-LED	ALIVE
2	PB1	T1		J	LCD-Display – RW	RW
3	PB2	INT2	AIN0	J	LCD-Display – ENABLE	ENABLE
4	PB3	OC0	AIN1	J	LCD-Display – RESET	RESET
5	PB4	SS		N		
6	PB5	MOSI		J	ISP Programmierinterface	MOSI
7	PB6	MISO		J	ISP Programmierinterface	MISO
8	PB7	SCK		J	ISP Programmierinterface	SCK
9	RESET	RESET	Г	J	Externer Reset Eingang	ISP_RESET
10	VCC	VCC		J	Spannungsversorgung +5V	VCC
11	GND	GND		J	Ground GND	GND
12	XTAL2	XTAL2	2	N		
13	XTAL1	XTAL1	1	N		
14	PD0	RXD		Ν		
15	PD1	TXD		J	RS232 Schnittstelle – Transmit Data	RXD (andere Logik!!)
16	PD2	INT0		N		
17	PD3	INT1		N		
18	PD4	OC1B		Ν		
19	PD5	OC1A		N		
20	PD6	ICP1		N		
21	PD7	OC2		J	Lüfter Steuersignal	FAN
22	PC0	SCL		J	I2C-Interface zu SHT85	SCL
23	PC1	SDA		J	I2C-Interface zu SHT85	SDA
24	PC2	ТСК		N		
25	PC3	TMS		N		
26	PC4	TDO		N		
27	PC5	TDI		Ν		
28	PC6	TOSC	1	Ν		

PIN	Port	Funktion	Used	Beschreibung	Definition
29	PC7	TOSC2	N		
30	AVCC	AVCC	J	Spannungsversorgung +5V	VCC
31	GND	GND	J	Ground GND	GND
32	AREF	AREF	J	Spannungsversorgung +5V	VCC
33	PA7	ADC7	J	LCD-Display Data-Bit 7	DB7
34	PA6	ADC6	J	LCD-Display Data-Bit 6	DB6
35	PA5	ADC5	J	LCD-Display Data-Bit 5	DB5
36	PA4	ADC4	J	LCD-Display Data-Bit 4	DB4
37	PA3	ADC3	J	LCD-Display Data-Bit 3	DB3
38	PA2	ADC2	J	LCD-Display Data-Bit 2	DB2
39	PA1	ADC1	J	LCD-Display Data-Bit 1	DB1
40	PA0	ADC0	J	LCD-Display Data-Bit 0	DBO

Tabelle 3: Ressourcenzuordnung ATmega16

Farbliche Zuordnungen "Funktion":

Zu Timer0 gehörende Pin's
Zu Timer1 gehörende Pin's
Zu Timer2 gehörende Pin's
Zu Timer3 gehörende Pin's
Zu den Analog-Digital-Wandlern gehörend
JTAG Interface
I ² C Interface
ISP Programmierinterface
Serielle Schnittstelle RS232
Externe Interrupts und Reset
Spannungsversorgungen
Externe Taktung
Adressleitungen für externes Speicherinterface
Seriell Programming Interface für
Analog Komparator

Die unter "Definition" vergebenen Namen definieren die Namensgebung der Signalleitungen im Schaltplan und ggf. in der Software.

8.3 Interrupt-Vektor-Tabelle ATmega16

	Deserves	•	
Vector No.	Address ⁽²⁾	Source	Interrupt Definition
1	\$000 ⁽¹⁾	RESET	External Pin, Power-on Reset, Brown-out Reset, Watchdog Reset, and JTAG AVR Reset
2	\$002	INT0	External Interrupt Request 0
3	\$004	INT1	External Interrupt Request 1
4	\$006	TIMER2 COMP	Timer/Counter2 Compare Match
5	\$008	TIMER2 OVF	Timer/Counter2 Overflow
6	\$00A	TIMER1 CAPT	Timer/Counter1 Capture Event
7	\$00C	TIMER1 COMPA	Timer/Counter1 Compare Match A
8	\$00E	TIMER1 COMPB	Timer/Counter1 Compare Match B
9	\$010	TIMER1 OVF	Timer/Counter1 Overflow
10	\$012	TIMER0 OVF	Timer/Counter0 Overflow
11	\$014	SPI, STC	Serial Transfer Complete
12	\$016	USART, RXC	USART, Rx Complete
13	\$018	USART, UDRE	USART Data Register Empty
14	\$01A	USART, TXC	USART, Tx Complete
15	\$01C	ADC	ADC Conversion Complete
16	\$01E	EE_RDY	EEPROM Ready
17	\$020	ANA_COMP	Analog Comparator
18	\$022	TWI	Two-wire Serial Interface
19	\$024	INT2	External Interrupt Request 2
20	\$026	TIMER0 COMP	Timer/Counter0 Compare Match
21	\$028	SPM_RDY	Store Program Memory Ready

Table 18. Reset and Interrupt Vectors

Notes: 1. When the BOOTRST Fuse is programmed, the device will jump to the Boot Loader address at reset, see "Boot Loader Support – Read-While-Write Self-Programming" on page 246.

2. When the IVSEL bit in GICR is set, interrupt vectors will be moved to the start of the Boot Flash section. The address of each Interrupt Vector will then be the address in this table added to the start address of the Boot Flash section.

Table 19 shows Reset and Interrupt Vectors placement for the various combinations of BOOTRST and IVSEL settings. If the program never enables an interrupt source, the Interrupt Vectors are not used, and regular program code can be placed at these locations. This is also the case if the Reset Vector is in the Application section while the Interrupt Vectors are in the Boot section or vice versa.

Tabelle 4: Interrupt-Vektor-Tabelle	ATmega16
rabene in interrapt renter rabene	

BOOTRST	IVSEL	Reset address	Interrupt Vectors Start Address
1	0	\$0000	\$0002
1	1	\$0000	Boot Reset Address + \$0002
0	0	Boot Reset Address	\$0002
0	1	Boot Reset Address	Boot Reset Address + \$0002

Table 19. Reset and Interrupt Vectors Placement⁽¹⁾

Note: 1. The Boot Reset Address is shown in Table 100 on page 257. For the BOOTRST Fuse "1" means unprogrammed while "0" means programmed.

Tabelle 5: Interrupt-Vektor-Tabelle ATmega16

In der aktuellen Umsetzung Version 1 des HygroTherm wird aktuell keine externe Interrupt-Quelle benötigt bzw. verwenden.

Für die Erzeugung des Alive-Signals und damit die blinkende Status LED wird TIMER1 COMPA verwendet.

Die LCD-Hintergrundbeleuchtung wird OHNE PWM umgesetzt da der ATmega16. Die Dimmung der Hintergrundbeleuchtung erfolgt mittels Spindeltrimmer.

8.4 Basisbeschaltung eines ATmega16 inkl. Display

Normalerweise veröffentliche ich in meinen Dokumenten Basisbeschaltungen der jeweiligen Prozessoren in Verbindung mit den wichtigsten Schaltungsteilen wie:

- Reset-Logik
- ISP-Interface
- Spannungsversorgung
- Geräuschreduktion für ADC
- Externer Quarz
- Display

Da die Schaltung für das Projekt HygroTherm sehr minimalistisch gehalten ist und außer dem SHT85 nur wesentliche Schaltungskomponenten beinhaltet, wird in diesem Dokument auf eine separate Basisbeschaltung des ATmega16 verzichtet.

Stattdessen wir direkt die Gesamtschaltung des Projekts auch in diesem Kapitel herangezogen.

Schaltbild 1: Der Schaltplan des Projekts als Basisbeschaltung mit ATmega16

Bauteile:

	Stückliste: Basisbeschaltung ATm	ega16 mit LCD	D-Display und SHT85
Widerstände		Halbleiter	
R1	Metallschichtwiderstand 150 Ω	D1	Diode 1N 4148
R2	Spindeltrimmer 1k Ω	LED1	3mm LED Low Current green
R3	Spindeltrimmer 10k Ω	LED2	3mm LED Low Current red
R4, R5	Metallschichtwiderstand 1k5k Ω	Q1	NPN Transistor BC547
R6, R7	Metallschichtwiderstand 10k Ω	IC1	ATmega16-16PU 8 MHz intern
R8	Metallschichtwiderstand 56 Ω	IC2	Sensirion SHT85
R9	Metallschichtwiderstand 1k2 Ω	U\$1	LCD-Display HD447804 16x2
R10	Metallschichtwiderstand 4k7 Ω		
Kondensatoren		Sonstiges	
C1. C2, C3	Keramikkondensator 100nF	S2	Kurzhubtaster
C4	Keramikkondensator 47 nF	SV1	Federleiste MA03-2 (ISP)
		JP1	Jumper RM2,54
		FAN	Miniaturlüfter 5V
		S1	CLW1016 Miniaturschalter On/Off
		FTDI1	Pin-Header 1x6 gewinkelt RM2,54
		CN1	USB-Mini Typ B

Tabelle 6: Stückliste Basisbeschaltung ATmega16

Reset-Taster:

Als Reset-Taster wird ein Print-Kurzhubtaster verwendet

Kurzhubtaster 6x6mm, Höhe: 4,3mm, 12V, vertikal Bestellnummer Reichelt Elektronik: *TASTER 3301*

Tabelle 7: Kurzhubtaster für RESET

8.5 ISP-Schnittstelle / ISP-Programmierung

Zur In-System-Programmierung wird die ATMEL ISP-Schnittstelle umgesetzt. Die Programmierung im Projekt erfolgt direkt über BASCOM mit Hilfe des USB-ISP-Programmer AVR ISP mkII.

Der AVR ISP mkll wurde unter Windows mit Hilfe des Tools "Lib USB win32" lauffähig gemacht.

8.5.1 ISP Programmierinterface von ATMEL

Tabelle 8: ISP connection PINOut

Für das Projekt HygroTherm wird das 6-polige Interface in der folgenden Form umgesetzt:

Schaltbild 2: 10-Pin ISP connection PINOut

Der Adapter und das 10-polige Interface werden nicht umgesetzt. Das 6-polige ISP-Interface befindet sich auf allen Boards und kann direkt mit dem USB-ISP-Programmer AVRISP mkII verbunden werden.

8.5.2 AVR ISP MKII unter Windows 10 mit BASCOM

Unter

sourceforge.net/projects/libusb-win32/?source=directory

gibt das open source tool "Lib USB win32" zum Download.

Zur Vorgehensweise:

- 1. Das ZIP Archiv wird in einem beliebigen Verzeichnis extrahiert
- 2. Im extrahierten Verzeichnis gibt es noch ein Unterverzeichnis "bin", in diesen befindet sich die Datei infwizard.exe.
- 3. Diese inf-wizard.exe muss man (mit rechter Maustaste) als Administrator ausführen und im Menu dann den AVR ISP MK2 auswählen.
- 4. Im nächsten Fenster kann man die Vendor-ID und weitere Informationen sehen
- 5. Danach wird der Speicherort für die Inf-Datei gesucht.
- 6. Nach dem Speichern dann unbedingt auf "Install now" klicken. Wird das nicht gemacht, funktioniert es nicht.
- 7. Bei mir war nach der Installation der AVR ISP MK2 korrekt im Gerätemanager installiert, also kein Neustart notwendig.

AVRISP_mkll.cat	19.12.2019 20:09	Sicherheitskatalog	8 KB
AVRISP_mkll.inf	19.12.2019 20:09	Setup-Informatio	8 KB
📧 installer_x64.exe	19.12.2019 20:09	Anwendung	25 KB
📑 installer_x86.exe	19.12.2019 20:09	Anwendung	23 KB

Abbildung 8: Installation erfolgreich und Funktion gegeben, INF Datei und Installer erzeugt

Abbildung 9: mkII erfolgreich im Gerätemanager installiert

In BASCOM unter Options->Programmer wird der dann als USBprog Programmer/AVR ISP mkII eingestellt

BASCOM-AVR Optio	ons			
Compiler Communic	ation Environment S	Simulator Programmer	Monitor Printer	
Programmer	USBprog Programmer	r / AVR ISP mkll	~	
Play sound Erase warning Program after c	Auto Fla	lash	Upload Code and Data terminal emulator after programming	
COM-port Clock Timeout USB Timeout Serial	COM1	Do not set ISF AVRISP proto USB	^D clock frequency	
	Default	✓ <u>O</u> k	X Cancel	

Abbildung 10: Einstellungen für den AVRISP mkII in BASCOM

Bei Programmieren dann auf den Button "Program Chip" (F4) und im Menu erst den Chip erkennen lassen "Identify Chip" und brennen über "Erase and program Chip"

Nicht einfach Write Buffer benutzen, dann löscht er nicht vorher!

8.6 Trace- bzw. Debug-Schnittstelle

In allen bisherigen Projekten wurde zum Tracen und zur Ausgabe von Daten vom ATmega zum PC eine UART bzw. RS232 Schnittstelle umgesetzt. Zur Vollständigkeit wird diese auch hier in diesem Kapitel nochmals beschrieben.

Aber.....

Beginnend mit dem Projekt HygroTherm wird auf UART-USB-Interface umgestellt. Zum Einsatz kommt die UART-USB--Bridge von FTDI. Um das Rad nicht neu zu erfinden und fine pitch Bauelemente löten zu müssen wird auf bestehende Produkte zurückgegriffen.

Die Wahl fällt dabei auf die beiden Produkte

- 1. FTDI Friend + Extras v1.0
- 2. FTDI Serial TTL-232 USB Cable

von Adafruit welche in diesem Kapitel auch weiter und detailliert beschrieben werden. Damit gibt es eine zukunftssichere Lösung welche für 3,3V und 5V Projekte gleichermaßen eingesetzt werden kann.

Abkürzung	Name	Beschreibung	Pin-Nr. 25-pol.	Pin-Nr. 9-pol.	In/Out
	Common Ground	Gemeinsame Abschirmmasse (nicht Da- tenmasse)	Pin 1	_	_
TxD, TX, TD	Transmit Data	Leitung für ausgehende (gesendete) Daten.	Pin 2	Pin 3	Out
RxD, RX, RD	Receive Data	Leitung für den Empfang von Daten.	Pin 3	Pin 2	In
RTS	Request to Send	"Sendeanforderung"; Eine logische Null an diesem Ausgang signalisiert der Ge- genstelle, dass sie Daten Senden kann	Pin 4	Pin 7	Out
СТЅ	Clear to Send	Eine logische Null an diesem Eingang ist ein Signal der Gegenstelle, dass sie Da- ten entgegennehmen kann	Pin 5	Pin 8	In
DSR	Dataset Ready	Ein angeschlossenes Gerät signalisiert dem Computer, dass es einsatzbereit (nicht notwendigerweise empfangsbe- reit) ist, wenn eine logische Null auf dieser Leitung anliegt.	Pin 6	Pin 6	In
GND	Ground	Signalmasse. Die Signalspannungen werden gegen diese Leitung gemessen.	Pin 7	Pin 5	_
DCD, CD	(Data) Carrier De- tect	Ein Gerät signalisiert dem Computer, dass es einlaufende Daten auf der Lei- tung erkennt	Pin 8	Pin 1	In
DTR	Data Terminal Ready	Über diese Leitung signalisiert der PC dem Gerät, dass er betriebsbereit ist. Damit kann ein Gerät eingeschaltet oder zurückgesetzt werden. (Üblicher- weise schaltet ein Gerät z.B. Modem diese Leitung auf DSR durch, wenn es einsatzbereit ist)	Pin 20	Pin 4	Out
RI	Ring Indicator	Das Gerät zeigt dem PC an, dass ein An- ruf ankommt ("ring" ist engl. für "klin- geln"; besonders bei Modems)	Pin 22	Pin 9	In

8.6.1 RS232-Traceschnittstelle

Tabelle 9: PIN-Belegung des seriellen RS232-Ports

In/Out wird auch Sicht des PC's aus betrachtet.

RS232 Buchse 9-polig:

RS232 Stecker 9-polig:

8.6.2 Adapter RS232 PIN-Header / D-SUB9

Schaltbild 3: Adapter zwischen PIN-Header und D-SUB9 Buchse

Bauteile:

	Stückliste: RS232-Adapter zwischer	PIN-Header und	D-SUB9 Buchse PC
Sonstiges		Halbleiter	
PIN-HEADER	PFL10 Pfostensteckverbinder	IC1	Maxim MAX232 CPE
D-SUB_9POLIG	SUB-D-Buchse 9-polig.		
Kondensatoren			
C1, C2, C3, C4, C5	Elko 1µF/16V		

Tabelle 11: Stückliste RS232-Adapter zwischen PIN-Header und D-SUB9 Buchse PC

PIN-Belegung Pfostenstecker:

PIN	Funktion
1	TxD
2	RxD
3	n.c.
4	n.c.
5	n.c.
6	n.c.
7	n.c.
8	n.c.
9	GND
10	Spannungsversorgung Target (Vcc)

Tabelle 12: PIN-Belegung RS232-Pfostensteckers

Ressourcenzuordnung zum ATmega16:

Nummer	Schaltbild	Ressource ATmega16
1	RXD	PortD.0 [PD0] (RXD)
2	TXD	PortD.1 [PD1] (TXD)

Tabelle 13: Ressourcenzuordnung SW-RS232 für den ATmega16

8.6.3 Trace-Adapter RS232 Prototyp auf Lochraster

Abbildung 11: RS232-Traceadapter

8.6.4 FTDI Friend + extra – v1.0 UART-USB-Bridge

Für das Tracing und die Anbindung der neuen Projekte wird Anstelle RS232 eine UART-USB-Bridge von Adafruit eingesetzt, FTDI Friend + Extras – v1.0.

Adafruit Produkt ID: 284

Abbildung 12: FTDI Friend + Extras - v1.0

Für die Konfiguration des FTDI Friend existieren auf der Platinen-Rückseite Lötflächen bzw. PCB-Brücken die gesetzt und entfernt werden müssen.

Bei VCC kann zwischen 3,3V und 5V gewählt werden (Default ist 5V).

Das Logik-Level für RxD und TxD kann zwischen 3,3V und 5V geändert werden. Default ist 3,3V. Mit dieser Einstellung sind die Pegel aber auch 5V compliant und funktionieren für beide Spannungspegel.

Die Funktion des 6. Pins kann wahlweise auf DTR oder RTS gesetzt werden (Default ist RTS)

Pinbelegung der Stecker:

Pin 1	Schwarz	Ground	
Pin 2	Braun	CTS	
Pin 3	Rot	VCC (Power), 5V	(* 3 <i>,</i> 3V)
Pin 4	Orange	TxD 3V Level	(* 5V Level)
Pin 5	Gelb	RxD 3V Level	(* 5V Level)
Pin 6	Grün	RTS	(* DTR)

(* = alternative Funktion)

Für weitere Details wird auf das Adafruit Manual verwiesen, welches unter folgendem Link zum Download zur Verfügung steht:

https://learn.adafruit.com/ftdi-friend/overview https://cdn-learn.adafruit.com/downloads/pdf/ftdi-friend.pdf?timestamp=1550729989

Schaltplan des FTDI Friend:

Schaltbild 4: Schaltplan des Adafruit FTDI Friend

Layout des FTDI Friend:

Abbildung 13: Layout des FTDI Friend

8.6.5 FTDI Serial TTL-232 USB Cable

Neben dem FTDI Friend gibt es ein komplett fertiges Kabel FTDI Serial TTL-232 USB Cable von Adafruit welches auch zum Einsatz kommt bzw. kommen kann und die gleiche Funktion abdeckt. Der einzige Unterschied besteht in der festen Konfiguration mit einer Spannungsversorgung von VCC = 5V und einem Signalpegel von 3,3V.

Adafruit Produkt ID: 70

Abbildung 14: FTDI Serial TTL-232 USB Cable

Abbildung 15: FTDI Serial TTL-232 USB Cable Datenblatt

Abbildung 16: FTDI Serial TTL-232 USB Cable Detailansichten

8.7 AVR Fusebits Tutorial

Einleitung - Was sind Fusebits?

Fusebits sind im Grunde genommen nichts anderes als Speicherzellen, die man Programmieren und Löschen kann. Sie dienen jedoch nicht zur Speicherung von Daten, sondern mit ihrer Hilfe kann das Verhalten des AVR beeinflusst werden. Zum Beispiel können bestimmte Funktionen aktiviert und deaktiviert werden.

Was ist zu beachten?

Bevor man zum ersten Mal die Fusebits eines AVR verändert, sollte man wissen das man den Controller damit nicht zerstören kann. Es ist jedoch möglich den Controller so einzustellen das man mit den normalen Werkzeugen nicht mehr darauf zugreifen kann. Grundsätzlich kann ein "verfuster" Controller mit dem richtigen Werkzeug aber wieder repariert werden. Ob dies wirtschaftlich jedoch sinnvoll ist steht auf einem anderen Blatt.

Was anfänglich Probleme verursacht ist die "invertierte Logik" der Fusebits. Ein programmiertes Fusebit ist nicht wie man annehmen könnte auf "1" gesetzt, sondern auf "0". Eine unprogrammierte Fuse ist "1". Manche Programme stellen programmierte Fusebits mit einem gesetzten Häkchen dar (z.B. PonyProg), welches dann als eine 0 (=programmed) interpretiert wird. Möchte man das Fusebit "setzen" oder "programmieren" muss man das Häkchen setzen.

Handelt es sich um ein Enable Fusebit bedeutet ein programmiertes Fusebit (0), dass die Funktion eingeschaltet ist. Ist es ein Disable Fusebit bedeutet ein programmiertes Fusebit (0), dass die Funktion ausgeschaltet ist.

Was braucht man?

Die Fusebits lassen sich über ISP, JTAG oder parallel programmieren. Man kann hierfür die gleiche Hardware und Software verwenden wie zum Programmieren der des Flash Speichers oder des EEPROMs, zum Beispiel PonyProg oder das AVR Studio.

Die Fusebytes

Je nach Controller stehen bis zu drei Fusebytes zur Verfügung: Fuse Low Byte, Fuse High Byte und Extended Fuse Byte. Einige der älteren Controller haben nur ein Fuse Byte und sehr wenige Fusebits.

Die Fusebits

Die folgende Beschreibung listet alle Fusebits auf die es bei den AVR Controllern gibt. Es gibt jedoch keinen Controller in dem alle Fusebits gleichzeitig zu finden sind. Ältere Controller vom Typ AT90S kennen teilweise nur 2 Fusebits.

<u>CKSEL</u>

Die wohl am häufigsten geänderten Fusebits sind CKSEL0 bis CKSEL3 (Select Clock Source). Mit ihrer Hilfe wählt man die Taktquelle aus der der Controller seinen Takt erhält. Hier ist etwas Vorsicht geboten da eine falsche Einstellung den Controller lähmen kann. Eine falsche Einstellung lässt sich jedoch relativ leicht beheben. Die genauen Parameter können zwischen den einzelnen Typen variieren

Default: Interner RC Oszillator mit 1MHz (bzw. 8MHz bei Typen mit Vorteiler)

CKSEL0: 0 (programmiert) CKSEL1: 1 (unprogrammiert) CKSEL2: 1 (unprogrammiert) CKSEL3: 1 (unprogrammiert)

<u>SUT</u>

Mit SUTO und SUT1 lässt sich die Zeit einstellen wie lange der Reset Impuls nach einem Reset oder Power Up verzögert wird. Je nach Umgebungsbedingung kann die Reset Zeit verlängert oder verkürzt werden. Zusammen mit der Brown Out Detection wird eine externe Reset-Schaltung (bis auf den üblichen 10kOhm PullUp Widerstand) meist überflüssig. Default:

SUT0: 0 (programmiert) SUT1: 1 (unprogrammiert)

CKDIV8

Divide Clock by 8 ist etwas irreführend. Wenn dieses Fusebit gesetzt ist wird ein Vorteiler aktiviert, der den Takt für den Controller durch 8 teilt. Es ist jedoch möglich diesen Vorteiler auf einen anderen Wert einzustellen. Dies ist dann sinnvoll, wenn der Controller aus einer externen Taktquelle gespeist werden soll, die Frequenz aber zu hoch ist. Details dazu im Artikel Taktquelle.

Default: CKDIV8: 0 (programmiert)

<u>CKOUT</u>

Wird diese Fuse programmiert wird der CPU-Takt an dem entsprechenden CLKO Pin ausgegeben.

Default:

CKOUT: 1 (unprogrammiert)

<u>CKOPT</u>

CKOPT kommt zum Einsatz, wenn der AVR von einem externen Quarz getaktet wird. Wird CKOPT programmiert (0) schwingt der Oszillator mit der maximalen Amplitude. Dies kann notwendig werden, wenn der AVR in einer Umgebung mit vielen Störsignalen betrieben werden soll. Ist CKOPT unprogrammiert (1) schwingt der Oszillator mit einer niedrigeren Amplitude. Dadurch verringert sich die Stromaufnahme und die Störabstrahlung.

Default:

CKOPT: 1 (unprogrammiert)

<u>RSTDISBL</u>

Dieses Fuse Bit steuert die Funktion des Reset Pin. Wird es programmiert kann man den Reset Pin als normalen IO Pin verwenden.

Achtung: Wird dieses Bit programmiert kann der Controller nicht mehr über die ISP Schnittstelle erreicht werden

Default:

RSTDISBL: 1 (unprogrammiert)

<u>SPIEN</u>

Mit SPIEN kann die ISP Schnittstelle abgeschaltet werden. Dieses Fusebit lässt sich nur über die parallele Programmierung ändern. Ist die ISP Schnittstelle einmal abgeschaltet kann der Controller nicht mehr über ISP erreicht werden.

Default:

SPIEN: 0 (programmiert)

<u>JTAGEN</u>

JTAGEN aktiviert/deaktiviert die JTAG Schnittstelle. Default: JTAGEN: 0 (programmiert)

<u>DWEN</u>

DWEN aktiviert/deaktiviert die Debug Wire Schnittstelle. Default: DWEN: 1 (unprogrammiert)

<u>OCDEN</u>

OCDEN aktiviert/deaktiviert das On-Chip Debug System. Das On-Chip Debug System kann unabhängig von der JTAG Schnittstelle deaktiviert werden. Bei abgeschaltetem OCD kann der Controller über JTAG nur programmiert werden. Default:

OCDEN: 1 (unprogrammiert)

<u>EESAVE</u>

Wird EESAVE programmiert wird das EEPROM bei einem Chip Erase vor dem Löschen geschützt. Ein Chip Erase löscht normalerweise den kompletten Speicher.

Default:

EESAVE: 1 (unprogrammiert)

BODEN

BODEN aktiviert/deaktiviert die Brown Out Detection. Bei manchen Controllern wird diese Funktion durch die BODLEVEL Fusebits übernommen.

Default: BODEN: 1 (unprogrammiert)

BODLEVEL

Mit BODLEVEL kann der Spannungswert eingestellt werden, bei dem der Unterspannungsschutz aktiv werden soll. Ältere Controller (z.B. ATmega128) haben nur zwei Schwellwerte. Mit BODLEVEL kann zwischen den Werten gewechselt werden, mit BODEN wird die Funktion komplett deaktiviert. Neuere Controller (z.B. ATmega168) haben 3 BODLEVEL Fusebits mit denen mehrere Schwellwerte eingestellt werden können bzw. die gesamte Funktion deaktiviert wird. Ab Werk ist bei allen Typen die BOD Funktion abgeschaltet.

Default: BODLEVEL: 1 (unprogrammiert)

WDTON

Mit WDTON kann der Watchdog Timer permanent aktiviert werden. Ist dieses Fusebit nicht programmiert (1) kann der Watchdog per Software gesteuert werden.

Default:

WDTON: 1 (unprogrammiert)

<u>BOOTRST</u>

BOOTRST bestimmt an welche Adresse nach einem Reset gesprungen wird. Unprogrammiert (1) springt der Controller nach einem Reset an Adresse \$0000. Wird das Fusebit programmiert springt der Controller nach einem Reset an den Beginn des Bootloaders. Die Adresse hängt vom Controller und von den Einstellungen der BOOTSZ Fusebits ab.

Default:

BOOTRST: 1 (unprogrammiert)

<u>BOOTSZ</u>

Mit BOOTSZ wird die Größe des Speicherbereiches bestimmt, der für den Bootloader reserviert wird. Die Größe ist abhängig vom Controllertyp. Dieser Speicherbereich befindet sich immer am Ende des Flash Adressraumes.

Default: BOOTSZ: siehe Datenblatt

Compatibility Bits

Viele Controller haben ein Compatibility Bit. Mit diesem Bit lässt sich der Controller in einen Modus versetzen, in dem er sich exakt so verhält wie sein Vorgänger. Beim ATmega128 gibt es z.B. das M103C Bit. Der ATmega128 verhält sich also wie ein ATmega103.

Ob das Compatibility Bit ab Werk programmiert ist oder nicht hängt vom Controller ab.

SELFPRGEN

SELFPRGEN aktiviert/deaktiviert die Self Programming Funktion. Default:

SELFPRGEN: 1 (unprogrammiert)

<u>HWBEN</u>

HWBEN aktiviert/deaktiviert die Hardware Boot Funktion Default: HWBEN: 0 (programmiert)

Sollte ich ein Fusebit vergessen haben oder neue dazukommen bitte ergänzen.

Fusebits mit dem AVR Studio programmieren:

```
Seit geraumer Zeit verwende ich das AVR Studio 7.0
```

AVRISP mkll (0000B0019222) - Device Programming					?	×
Tool Device AVRISP mkll × ATmega1	6 TISP	~ Apply	Device signature 0x1E9403	Target Voltage Read 5,3 V Read	₽	
Interface settings Tool information Device information Oscillator calibration Memories Fuses Lock bits Production file	Fuse Name Value VHIGH.OCDEN Value HIGH.JTAGEN Value HIGH.SPIEN Value HIGH.ESAVE Value HIGH.BOOTSZ Boot Flash size=1024 words start address=\$1C00 × HIGH.BOOTRST Value HIGH.BOOTRST Value HIGH.CKOPT Value IOW.BODLEVEL Brown-out detection at VCC=2.7 V × LOW.BODEN Value LOW.SUT_CKSEL Int. RC Osc. 8 MHz; Start-up time: 6 CK + 64 ms ×					
	HIGH 0xD9 LOW 0xE4	mming		Co Program Verify	opy to clipb	oard
Starting operation read registe Reading register HIGHOK Reading register LOWOK Read registersOK	ers					
 Read registersOK 					Clos	e

Abbildung 17: Fusebits im AVR Studio

Am einfachsten und intuitivsten lassen sich die Fusebits mit dem AVR Studio programmieren. Für jedes Fusebit gibt es eine kurze Beschreibung und den Default Wert. Gibt es für eine Funktion mehrere Fusebits wird für jede Kombination ein Häkchen mit Beschreibung und Bitkombination angezeigt.

In diesem Beispiel (ATmega16 aus dem Projekt) sieht man z.B., dass die Brown Out Detection auf 2,7V eingestellt wurde.

8.8 AVR Fuse Konfiguration ATmega16

Der ATmega16 besitzt zwei Fuse-Bytes.

- 1. Fuse High Byte
- 2. Fuse Low Byte

Fuse Bytes des ATmega16:

The ATmega16 has two fuse bytes. Table 105 and Table 106 describe briefly the functionality of all the fuses and how they are mapped into the fuse bytes. Note that the fuses are read as logical zero, "0", if they are programmed.

Fuse High Byte	Bit No.	Description	Default Value
OCDEN ⁽⁴⁾	7	Enable OCD	1 (unprogrammed, OCD disabled)
JTAGEN ⁽⁵⁾	6	Enable JTAG	0 (programmed, JTAG enabled)
SPIEN ⁽¹⁾	5	Enable SPI Serial Program and Data Downloading	0 (programmed, SPI prog. enabled)
CKOPT ⁽²⁾	4	Oscillator options	1 (unprogrammed)
EESAVE	3	EEPROM memory is preserved through the Chip Erase	1 (unprogrammed, EEPROM not preserved)
BOOTSZ1	2	Select Boot Size (see Table 100 for details)	0 (programmed) ⁽³⁾
BOOTSZ0	1	Select Boot Size (see Table 100 for details)	0 (programmed) ⁽³⁾
BOOTRST	0	Select reset vector	1 (unprogrammed)

Table 105. Fuse High Byte

Notes: 1. The SPIEN Fuse is not accessible in SPI Serial Programming mode.

 The CKOPT Fuse functionality depends on the setting of the CKSEL bits. See See "Clock Sources" on page 25. for details.

- 3. The default value of BOOTSZ1..0 results in maximum Boot Size. See Table 100 on page 257.
- 4. Never ship a product with the OCDEN Fuse programmed regardless of the setting of Lock bits and the JTAGEN Fuse. A programmed OCDEN Fuse enables some parts of the clock system to be running in all sleep modes. This may increase the power consumption.
- 5. If the JTAG interface is left unconnected, the JTAGEN fuse should if possible be disabled. This to avoid static current at the TDO pin in the JTAG interface.

Fuse Low Byte	Bit No.	Description	Default Value
BODLEVEL	7	Brown-out Detector trigger level	1 (unprogrammed)
BODEN	6	Brown-out Detector enable	1 (unprogrammed, BOD disabled)
SUT1	5	Select start-up time	1 (unprogrammed) ⁽¹⁾
SUT0	4	Select start-up time	0 (programmed) ⁽¹⁾
CKSEL3	3	Select Clock source	0 (programmed) ⁽²⁾
CKSEL2	2	Select Clock source	0 (programmed) ⁽²⁾
CKSEL1	1	Select Clock source	0 (programmed) ⁽²⁾
CKSEL0	0	Select Clock source	1 (unprogrammed) ⁽²⁾

Table 106. Fuse Low Byte

Notes: 1. The default value of SUT1..0 results in maximum start-up time. SeeTable 10 on page 29 for details.

 The default setting of CKSEL3..0 results in internal RC Oscillator @ 1 MHz. See Table 2 on page 25 for details.

The status of the Fuse bits is not affected by Chip Erase. Note that the Fuse bits are locked if Lock bit1 (LB1) is programmed. Program the Fuse bits before programming the Lock bits.

Festlegung der Fuse-Bits für das Projekt HygroTherm:

Fuse High byte	e oxog (Dejuun	-0.995					
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
OCDEN	JTAGEN	SPIEN	СКОРТ	EESAVE	BOOTSZ1	BOOTSZO	BOOTRST
1	1	0	1	1	0	0	1

Fuse High Byte 0xD9 (Default = 0x99):

Tabelle 14: Fuse High Byte ATmega16

Fuse Low Byte - 0xE4 (Default = 0xE1):

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
BODLEVEL	BODEN	SUT1	SUT0	CKSEL3	CKSEL2	CKSEL1	CKSELO
1	1	1	0	0	1	0	0

Tabelle 15: Extended Fuse Byte ATmega16

Bemerkung:

0 = programmie	ert (!! negative Logik !!)
1 = unprogram	miert (!! negative Logik !!)
	Default (keine Programmierung)
	Wichtige Programmierung (abweichend von Default)
	Sonstige Systemeinstellung abweichend von Default)

CKSEL3-0 ist im Originalzustand laut Datenblatt auf 0001. Das entspricht dem internen Oszillator mit 1MHz. Uns interessiert aber der Zustand mit einer internen Taktung von 8 MHz. Dazu muss CKSEL3 auf 1 gesetzt werden. Die Start-Up-Time wird durch CKSEL0 und SUT bestimmt. Eine 0 auf CKSEL0 bedeutet zusammen mit 10 auf SUT1-0 eine Startverzögerung von 6 CK + 64 ms. Wie beim ATmega üblich, bedeutet eine Null ein Häkchen und bei einer Eins bleibt das Feld leer.

8.8.1 Die Fuse-Konfiguration von HygroTherm

Die folgenden Screenshots beziehen sich auf die Programmversion 7 des ATMEL Studios. Frühere Versionen weichen von davon ab, funktionieren aber mit Windows 10 nicht mehr.

AVRISP mkll (0000B0019222)	- Device Programming			? ×	AVRISP mkll (000	0B0019222) -	Device Progra	amming					? ×
Tool Device AVRISP mkll × ATmega	Interface	Device signature Read	Target Voltage		Tool AVRISP mkll	Device ATmega1	6 •	Interface ISP v Apply	Device signature	Read	Target Voltage	¢	
Interface settings Tool information Device information Oscillator calibration Memories Fuses Lock bits Production file	The ISP Clock	e lower than 1/4 of frequen	Reset to	125 kHz o default clock h Set	Interface setting Tool informatio Device informa Oscillator calible Memories Fuses Lock bits Production file	gs n tion ration	AVRISP mkll Debug host Debug port Serial numb Connection Firmware Ve Hardware Ve External Link Wo Tool Inf	er ersion ersion comation	127.00.1 64785 000060019222 com atmeLavrdbg.con 1.18 1	nection.lib	usb0	Copy 1	to clipboard
				Close	Reading tool info	rmationOK ool inform	nationOK						Close

Tabelle 16: AVR-Studio – Interface Settings

Tabelle 17: AVR-Studio – Tool Information

AVRISP mkll (0000B0019222)	- Device Programming						?	×	AVRISP r	nkll (0000	B0019222) -	Device Progr	amming	1					?	×
Tool Device AVRISP mkll × ATmega	Interface	Apply 0x	evice signature <1E9403	Read	Farget Voltage 5,3 V Re	ad 🔯			Tool AVRISP	mkli ×	Device ATmega1	6 🔻	Interface ISP	 Apply 	Device signature 0x1E9403	Read	Target Voltage 5,3 V Read	₽		
Interface settings Tool information Device information Oscillator calibration Memories Fuses Lock bits Production file	Detected device Device names Device signature Databet information CPU Flash size EEPROM size SRAM size VCC range Maximum operating speed	ATm 0x18 ATmega16L -8AU 2,7 - 5,5 V 8 MHz	ega16, ATmeg E9403 ATmega16L -8PU 2,7 - 5,5 V 8 MHz	a16A -8MU AV 16 512 b 1 h 2,7 - 5,5 V 8 MHz	ATmega16- 16AU R8 K8 K8 K8 4,5 - 5,5 V 16 MHz	ATmega16- 16PU 4,5 - 5,5 V 16 MHz Copy	ATmega16 16MU 4,5 - 5,5 V 16 MHz to clipboar	-	Interfac Tool inf Device Oscillat Memor Fuses Lock bi Produc	e settings ormation nformati or calibra ies is is	i tion	Calibrate fr Value: Ensure that with a valid	the locat	Address:	Memory :	v iting. If th , use Erasi	Read Write he location contains e Chip on the Mem	data, the ories page	write car a.	n fail
Reading device IDOK Reading device ID	OK						Close		Reading o	levice ID ding de	.ok wice ID	ок							Clo	ose

Tabelle 18: AVR-Studio – Device Information

Tabelle 19: AVR-Studio – Oscillator calibration

AVRISP mkll (0000B0019222) -	Device Programming ?	×	AVRISP mkll (0000B0019222)	2) - Device Programming	? ×
Tool Device AVRISP mkll × ATmega16	Interface Device signature Target Voltage 5 ISP × Apply 0x1E9403 Read 5,3 V Read \$		Tool Device AVRISP mkll × ATmega	Interface Device signature Target Voltage a16 ▼ ISP ▼ Apply 0x1E9403 Read 5,3 V Read 🗱	
Interface settings Tool information Device information Oscillator calibration Memories Fuses Lock bits Production file	Device Frase Chip v Erase now Flash (16 K8) CrOckumente/Elektronik/ATMEGA_Projekte/1stStep_ATmega2560/Atmega2560/hex v Gr Frase device before programming Verify Flash after programming Program Verify Read v Verify EEPROM after programming Verify EEPROM after programming Verify EEPROM after programming Verify Read		Interface settings Tool information Device information Oscillator calibration Memories Fuses Lock bits Production file	Fuse Name Value Ø HIGH-OCDEN	~
Reading device IDOK			Starting operation read regist	✓ Auto read ✓ Verify after programming Verify sters	Copy to clipboard
			Reading register HIGHOK Reading register LOWOK Read registersOK		
• ОК	Class		 Read registersOK 		Clore
	Ciose				Cidse

Tabelle 20: AVR-Studio - Memories

Tabelle 21: AVR-Studio – Fuses

AVRISP mkll (0000B0019222)	- Device Programming	? ×	AVRISP mkll (0000B0019222) -	Device Programming			? ×
Tool Device AVRISP mkll × ATmega	Interface Device signature Target Voltage 16 ▼ ISP ∨ Apply 0x1E9403 Read 5,3 V Read Image: Control of the second se	ŧ	Tool Device AVRISP mkll × ATmega16	Interface	Device signature 0x1E9403 Read	Target Voltage 5,3 V Read	
Interface settings Tool information Device information Oscillator calibration Memories Fuses Lock bits Production file	Lock Bit Value @ LOCKBIT.BL No memory lock features enabled ' @ LOCKBIT.BL No lock on SPM and LPM in Application Section ' @ LOCKBIT.BL No lock on SPM and LPM in Boot Section ' Lock Bit Register Value LOCKBIT 0xFF		Interface settings Tool information Device information Oscillator calibration Memories Fuese Lock bits Production file	Program device from ELF produces from ELF produces from ELF produces for the second se	uction file es Lock bits ramming tt	Program	 ✓ ✓ ✓ ✓ ✓ ✓ ✓
	✓ Auto read ✓ ✓ Verify after programming To clear lockbits, use Erase Chip on the Memories page.	Copy to clipboard fy Read		EEPROM Use	er Signatures 🗌 Fuses 🗌 Lo	ock bits	Save
Starting operation read regist Reading register LOCKBITO Read registersOK	ers K		Starting operation read register Reading register LOCKBITOK Read registersOK	rs			
Read registersOK			- ок				
		Close					Close

Tabelle 23: AVR-Studio – Production file
8.9 <u>Grundlagen zur Spannung 5V, Vcc und VDD</u>

Für die Spannungsversorgung des Projekts HygroTherm wird die Spannung +5V und GND bereitgestellt, welche über den USB-Anschluss von einem beliebigen Steckernetzteil bezogen werden können.

Unterschiedliche Technologien haben unterschiedliche Bezeichnungen für die notwendigen Spannungsversorgungen.

Für CMOS Bausteine gelten die Bezeichnungen VCC und GND.

TTL-Logik verwendet die Bezeichnungen VDD und VSS. VDD und VSS werden im Projekt durch 0Ω -Widerstände (Drahtbrücken) erzeugt, um EAGLE die korrekte Behandlung der Spannungen zu ermöglichen.

Für das Projekt gelten die folgenden Bezeichnungen in den Netzen:

Spannungspotential	Verwendeter Name
GND (Ground) = MASSE = 0V	GND
	VSS
+5V Spannung	VCC
	VDD
+12V	+12V

Schaltbild 5: Symbolfestlegung für Spannungsversorgungen

9 Elektronische Teilkomponenten

9.1 <u>Hauptschalter</u>

Das HygroTherm Thermometer / Hygrometer kann durch einen kleinen Hauptschalter ein- und ausgeschaltet werden.

Folgender Hauptschalter wurde ausgewählt:

12mm

Cylewet vertikaler Schiebeschalter / Wechselschalter, 12 mm, mit 3 Pins, PCB-Panel, für Arduino, CLW1016, 10 Stück

Amazon: AISIN Nr. B071P5VD49

Abbildung 18: Hauptschalter

9.2 Spannungsversorgung

Die Spannungsversorgung des HygroTherm erfolgt mittels 5V welche über einen Standard Mini USB 2.0 Typ B Male Stecker zugeführt werden kann. Die Stromaufnahme beträgt ca. 250 - 300 mA so dass sich jedes Universalnetzteil oder jeder PC USB-Anschluss dazu eignet.

Die gesamte Elektronik inklusive des Displays mit 5V.

Als Einbaubuchse Mini USB kommt das folgende Produkt von Conrad Elektronik zum Einsatz:

Mini USB-Typ B liegend 5-polig WR-COM Buchse, Einbau horizontal WR-COM Würth Elektronik

Conrad Electronic:

Bestell-Nr.: 1088421 – 62 Hst.-Teile-Nr.: 651005136521 EAN: 2050002388277

USB 2.0 – 5 polig	
Breite	7,8mm
Höhe	6,5 mm
Länge	8.15 mm

9.3 LCD - Display

Allgemeines:

Als Anzeigedisplay wird ein LCD-Text -Modul mit dem HD44780 Display-Controller eingesetzt. Das Display besitzt eine integrierte blaue Hintergrundbeleuchtung.

Umgesetzt wird die 8-Bit PIN-Mode Anbindung. Dabei werden die Display-Daten als ganzes Byte in den Display Speicher übertragen. Für diese Ansteuerung werden 10 Pin's des Controllers benötigt. Die R/W Leitung des Displays kann dabei einfach auf GND gelegt werden, wird in diesem Projekt aber beschaltet. Auf die Busy-Bit-Abfrage wird bei dieser Beschaltungsart verzichtet.

Abbildung 19:LCD HD44780 1602 16x2 - Bild 1

Abbildung 20:LCD HD44780 1602 16x2 - Bild 2

Das hier abgebildete Display ist ein HD44780 1602 LCD Modul mit einer Display Anzeige von 2x16 Zeichen und Hintergrundbeleuchtung.

Der Stückpreis des Displays lag Anfang 2020 bei 7,49 Euro bei Amazon.

Informationen zum Display:

- 16 Zeichen je Zeile, 2 zeilig
- Weiter Betrachtungswinkel und hoher Kontrast
- Industriestandard-HD44780 äquivalenter LCD-Kontroller
- Farbe des Hintergrunds: Blau
- Farbe der Schrift: Weiß
- EAN: 0889081214168
- Marke: SupplyEU

Anschlussbelegung und Beschaltung:

Das Text-LCD-Display mit dem HD44780 Display-Controller hat einen genormten 16 poligen Anschluss der im obigen Kapitel beschrieben ist.

14 polig ist der Anschluss des reinen LCD-Displays ohne Hintergrundbeleuchtung. Pin 15 und 16 ist die Anode und Kathode für die Hintergrundbeleuchtung.

Der Unterschied zwischen der 4-Bit und der 8-Bit Beschaltung ist, dass bei der 8-Bit Anbindung alle 8 Datenleitungen des Displays an einen kompletten Port des ATmega angeschlossen werden.

Diese Art der Anbindung ist nicht mit dem BUS-Mode zu verwechseln. BUS-Mode funktioniert nur bei speziellen ATmega-Varianten mit externem Speicherinterface. Der 8-Bit PIN-Mode funktioniert mit allen ATmega-Typen.

Die folgende Standardbeschaltung am Beispiel ATmega8 zeigt die 8-Bit PIN-Mode-Beschaltung:

Schaltbild 6: Schematische Basisbeschaltung des LCD-Displays an einem ATmega8

Bauteile:

Stückliste: Basisbeschaltung ATmega8 mit LCD-Grafik-Display								
Widerstände		Halbleiter						
R1	Metallschichtwiderstand 1k5 Ω	IC1	ATMEL AVR ATmega8-P					
R2	Spindeltrimmer 10k Ω	U\$1	LCD-Grafik-Display EA DOGM128x-6					
R3	Metallschichtwiderstand 150 Ω	LED1	Low-Current LED, gelb					
R4	Metallschichtwiderstand 10k Ω							
Kondensatoren		Sonstiges						
C1, C2	Keramikkondensator 100nF	SV1	Federleiste MA03-2 (ISP)					

Tabelle 25: Stückliste Basisbeschaltung ATmega16

Ressourcenzuordnung zum ATmega16:

Nummer	Schaltbild	Ressource ATmega16					
1	RESET	PortB.3	RESET	[GPIO]			
2	RW	PortB.1	RW	[GPIO]			
3	ENABLE	PortB.2	ENABLE	[GPIO]			
4	DBO	PortA.0	DBO	[GPIO]			
5	DB1	PortA.1	DB1	[GPIO]			
6	DB2	PortA.2	DB2	[GPIO]			
7	DB3	PortA.3	DB3	[GPIO]			
8	DB4	PortA.4	DB4	[GPIO]			
9	DB5	PortA.5	DB5	[GPIO]			
10	DB6	PortA.6	DB6	[GPIO]			
11	DB7	PortA.7	DB7	[GPIO]			

Tabelle 26: Ressourcenzuordnung ATmega16 für LCD-Display

Pin Nr.	Bezeichnung	Beschreibung
1	VSS	Ground (Masse 0V)
2	VDD	Logic Power Supply (Spannungsversorgung +5V)
3	V0	Operation voltage for LCD (Kontrast Poti 00,5V)
4	RS	Register Select, 1=Daten schreiben / 0=Kommando senden.
5	R/W	1=Read / 0=Write zum lesen / schreiben in das Display RAM
6	E	Enable Signale (Fallende Flanke -> Übertragen des Kommandos oder der Daten, H-Pegel -> Lesen von Daten aus dem Display)
7	DB0	Datenbus Bit0 LSB
8	DB1	Datenbus Bit1
9	DB2	Datenbus Bit2
10	DB3	Datenbus Bit3
11	DB4	Datenbus Bit4
12	DB5	Datenbus Bit5
13	DB6	Datenbus Bit6
14	DB7	Datenbus Bit7 MSB
15	LED_A	Backlight Anode (Hintergrundbeleuchtung Anode +)
16	LED_K	Backlight Cathode (Hintergrundbeleuchtung Kathode -)

Tabelle 27: Pinbelegung des HD44780 LCD-Display

Befehlssatz und Ansteuerung

Der HD44780 LCD-Controller besitzt 3 Speicher:

- 1. Das DDRAM (Display Data RAM) Hier werden die anzuzeigenden Daten geschrieben bzw. gespeichert.
- 2. Das CGROM (Character Generator ROM) enthält die Zeichen in Form von 5x8 oder 5x10 Punktmatrizen.
- 3. Im CGRAM (Character Generator RAM) können acht benutzerdefinierte Zeichen 5x8 Pixel oder vier 5x10 Pixel abgelegt werden.

Das LCD-Display stellt die folgenden Befehle zur Verfügung:

Befehl	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Beschreibung	Ausführungszeit bei f₀⊯=250kHz
Clear Display	0	0	0	0	0	0	0	0	0	1	Löscht das Display und setzt den Cursor auf den Anfang der 1. Zeile (Addresse 0).	1.64mS
Cursor Home	0	0	0	0	0	0	0	0	1	*	setzt den Cursor auf den Anfang der 1. Zeile (Addresse 0)	1.64mS
Entry mode set	0	0	0	0	0	0	0	1	I/D	s	Setzt die Cursor Bewegungsrichtung (I/D), spezifiziert das Display zu schieben (S). Diese Operationen werden während des Daten lesen/schreiben durchgeführt.	40uS
Display on/off Control	0	0	0	0	0	0	1	D	С	В	Schaltet an/aus: das gesamte Display (D), Den Cursor (C) Cursor blinken (B).	40uS
Cursor/Display shift	0	0	0	0	0	1	S/C	R/L	*	*	Setzt Cursor Bewegung oder Display Bewegung (S/C), Bewegungsrichtung (R/L)	40uS
Function set	0	0	0	0	1	DL	N	F	*	*	Einstellen der Schnittstellen Datenlänge (DL), Anzahl Display Zeilen (N) und Zeichen Font (F).	40uS
Set CGRAM Address	0	0	0	1		CO	RAM	Adres	se		Setzen der CGRAM Adresse. CGRAM Daten werden gesendet und empfangen nach dem setzen.	40uS
Set DDRAM Address	0	0	1		DDRAM Adresse Setzen der DDRAM Adresse. DDRAM Daten werden gesendet und empfangen nach dem setzen.		40uS					
Read busy-flag and address counter	0	1	BF		CGR	AM / [DDRA	M Adı	esse		Liest das Busy-flag (BF), welches anzeigt das interne Operationen ausgeführt werden, und liest den CGRAM oder DDRAM Adress Zeiger Inhalt.	0uS
Write to CGRAM or DDRAM	1	0			s	Schreit	Date	n			Schreibt Daten zum CGRAM oder DDRAM.	40uS
read from CGRAM or DDRAM	1	1				Lese	Daten				Liest Daten vom CGRAM oder DDRAM.	40uS

Tabelle 28: Befehlsübersicht des HD44780 LCD-Displays

Bit	Einstellung / Status							
Name	Bit = 0	Bit = 1						
I/D	Erniedrige Cursor Position	Erhöhe Cursor Position						
S	Display nicht schieben	Display schieben						
D	Display aus	Display an						
С	Cursor aus	Cursor an						
В	Cursor blinken aus	Cursor blinken an						
S/C	Bewege Cursor	Schiebe Display						
R/L	Schiebe nach links	Schiebe nach rechts						
DL	4-bit Interface	8-bit Interface						
N	1/8 oder 1/11 Duty (1 Zeile)	1/16 Duty (2 Zeilen)						
F	5x7 Punkte	5x10 Punkte						
BF	Befehle werden akzeptiert	Interne Operation wird ausgeführt						

Tabelle 29: Bedeutung der Steuerbits beim HD44780 LCD-Displays

Helligkeit und Kontrast:

In diesem Projekt wird die Helligkeit nicht über eine – vom Controller gesteuerte – PWM ausgeführt, sondern über Vorwiderstände und Spannungsteiler via Spindeltrimmer.

Auch der Kontrast des Displays wird über Spindeltrimmer realisiert.

Schaltbild 7: Display Helligkeits- und Kontrastregelung

9.3.1 BASCOM Beispielcode für die Displayansteuerung (Funktionsbibliothek)

'#####################################	*#########	*########	*####	####### st;	####### and 02.0	######)4.201	# 7	
·				(C) Markus	s Fuld	e	
Testprogramm zur Inbetriebnahme einem HD44780 Display-Controlle	e eines LCI er.) Displays	s Serie	e ERM160:	2-6 mit			
 Die Inbetriebnahme erfolgt mit ATmega8L. Die Inbetriebnahme is ATmega8L nur der 4-Bit PIN-Modu Interfacemodus benötigt einen A ATmega128. Daher wird hier im H Die Umsetzung des 8-Bit Modus er 	einem Expe s dahingehe us umgesetz ATmega mit Programm nu erfolgt ges	erimentier end einges at werden externer ar der 4-E sondert.	s-Stecl schränl kann. Speich Sit-PIN	abrett a at, dass Der 8-B nerverwa N-Modus	uf Basis mit ein it Bus- ltung, z umgesetz	s eine nem z.B. zt.	S	
Die für die LCD-Display-Ansteue im Hautprogramm hintereinander fe wiederholt. Die für das LCD tionen sind damit abgebildet.	erung notwe programmie Display wi	endigen Ro ert und we .chtigster	outiner erden i bzw.	n sind so in einer verfügbo	equentie Endloss aren Fur	ell schlei nk-	-	
 Im ersten Teil des Programms we Initialisierung verwendet. Im 2 gegriffen und die Register bzw. Display direkt gesteuert. Hierk Kommando-Befehle und Speicherzu 	erden die E 2. Teil wir 2. Arbeitsva bei kommt d agriffe zum	BASCOM eig ad auf Inl ariablen o lie direkt a Einsatz.	genen H line-As lirekt te Adre	Funktion ssememble beschrie ssierune	en inkl er zurüd eben und g der	. der ck- d das		
'######################################	*****	*########	+++++++	* # # # # # # # #	######	+++++	#	
L Compiloringtruktionen und Compi	lordinolti						-	
- complierinstruktionen und compl							-	
<pre>\$regfile = "m8def.dat" \$crystal = 8000000</pre>				' Def: ' Qua:	inition: rzfreque	sdatei enz fü	für r 16	ATmega128 laden MHz festlegen
\$lcdvfo								
1							_	
' Allgemeine Zusatzinformatonen z	zu Programm	nbeginn						
							-	
' DDRAM Adressen des Display (in '	HEX)							
' Zeichen: 1 2 3 4 5 ' Zeile 1: 00 01 02 03 04 ' Zeile 2: 40 41 42 43 44	6 7 8 05 06 07 45 46 47	9 10 08 09 48 49	11 1 0A (4A 4	L2 13 DB 0C AB 4C	14 15 DD OE 4D 4E	16 0F 4F		
HD44780 Befehlssatz								
Befehl	Rs Rw	D7 D6	D5	D4 D3	3 D2	D1	DO	
 Bildschirminhalt Löschen Cursor Auf Startpos Modus Festlegen Display/Cursor Cursor/Display Schieben Funktionen Cgram Adresse Setzen Ddram Adresse Setzen Adresse/Status Lesen Daten In Ddram/Cgram Schreiben 	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0	0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 + BF + +	0 0 0 0 1 +	0 0 0 0 0 1 1 S DL N CGRAM DDRAM G-/DDRAM Date	0 1 D /C R/L F -Adresse -Adresse -Adresse	0 1 I/D C X X e	1 X S X X + + + +	
' Daten Aus Ddram/Cgram Lesen	1 1	+		Date	en		+	
' Kodierung der Steuerbits '								
Bit 0 = LOW		1 = HIGH	I					
<pre>I/D Cursorposition dekremer I S Displayinhalt fest D Display aus C Cursor aus</pre>	ntieren 	Cursorpo Displayi Display Cursor a	sition nhalt an n	n inkrem weiters	entierer chieben	1		

| Cursor blinkt nicht | Cursor blinkt ' B 's/c i Cursor bewegen Displayinhalt schieben ' R/L | Nach links schieben | Nach rechts schieben | 4-Bit Interface | 1-zeiliges Display | 8-Bit Interface | 2/4-zeiliges Display ' DL ' N ' F | 5×7-Font | 5×10-Font Kann Kommandos annehmen ' BF | Ist beschäftigt 1_____ ' Definition von Ressourcen _____ ' ----- LED's -----' Die Alive-LED wird sekündlich getoggelt um zu zeigen, dass der µC noch lebt Alive pin Alias Pinc.0 ' GPIO für Alive-LED (für DDR oder Input) Alive Alias Portc.0 ' GPIO für Alive-LED (für Output oder Pullup) ' ----- LCD-Display -----' LCD-Display Db0 pin Alias Portd.0 ' GPIO für LCD Pin4 Db1 pin Alias Portd.1 ' GPIO für LCD Pin4 ' GPIO für LCD Pin4 Db2_pin Alias Portd.2 ' GPIO für LCD Pin4 Db3 pin Alias Portd.3 Db4 pin Alias Portd.4 ' GPIO für LCD Pin4 Db5 pin Alias Portd.5 ' GPIO für LCD Pin5 Db6_pin Alias Portd.6 ' GPIO für LCD Pin6 ' GPIO für LCD Pin7 Db7 pin Alias Portd.7 ' GPIO für LCD RS Rs pin Alias Portc.5 ' GPIO für LCD E E_pin Alias Portc.4 ' Der RW Pin kann auch direkt mit GND verbunden werden da BASCOM nicht vom ' LCD lesen kann. Hierzu wäre eine 3rd-Party-LIB notwendig. ' GPIO für LCD RW Rw pin Alias Pinc.3 Rw Alias Portc.3 ·-----_____ ' Definition von Konstaten *_____ ' ----- Flags für Testumgebung -----' Die BASCOM IDE bietet in den Einstellungen eigene Settings zum LCD-Display ' welche mittel Kommando im Sourceode überschrieben werden können. ' Zum Test der IDE gibt es ein Flag das hier im Sourcecode alle Einstellunge ' deaktiviert. Dann müssen die EInstellungen in der IDE vorgenommen werden. **Const** Ide konfigurationsmodus = 1 ' Flag ' ----- Allgemeine Systemkonstanten -----' Tatsächliches Allgemeines **Const** False = 0 **Const** True = 1 **Const** Pegel low = 0 **Const** Pegel high = 1 **Const** Led aus = 0 **Const** Led ein = 1 ' Zeitvorgabe für Sekunden-Timer **Const** Timervorgabe = 34286 ' Timer von 1 Sekunden (SekundenTick) *_____ _____ ' Definition von Variablen und Datentypen

```
*_____
' ----- Temporäre Hilfsvariablen -----
Dim Temp byte 1 As Byte
                                               ' Temporare Byte Variable 1
Dim Temp_byte_2 As Byte
                                               ' Temporäre Byte Variable 2
1_____
' Konfiguration und Basiseinstellungen (Projekt und Testumgebung)
·_____
  ----- CONFIG -----
' ----- Timer -----
' Konfiguration eines Timers für 1 Sekunden Timer-Tick (Scheduler und Alive)
Config Timer1 = Timer , Prescale = 256
                                               ' Timer 1 verwenden
                                               ' Interrupt Routine
On Timer1 Sekunden_tick
Timer1 = Timervorgabe
Enable Timer1
                                               ' Interrupt für Sekunden-Tack
' ----- LCD Display -----
' RW-Ping auf LOW=GND schalten (wird nicht weiter benötigt)
Config Rw pin = Output
Rw = Pegel_low
' Konfiguration LCD Display
#if Ide konfigurationsmodus
  ' Config Lcdpin = Pin , Db4 = Db4 pin , Db5 = Db5 pin , Db6 = Db6 pin , Db7 = Db7 pin , E = E pin
, Rs = Rs pin
  ' Config Lcdbus = 4
                                                ' LCD arbeitet über 4-Bit
  Config Lcdpin = Pin , Port = Portd , E = E_pin , Rs = Rs_pin
  Config Lcdbus = 8
                                                LCD arbeitet über 8-Bit
  Config Lcd = 16 \times 2
                                               ' Display is 2-zeilig mit 16 Zeichen
#endif
Initlcd
                                               ' LCD initialisieren
                                               ' 100ms nach Init warten
Waitms 100
                                               ' Blinkenden Cursor abschalten
Cursor Off Noblink
' Definition benutzerdefinierter Zeichen
' Smily
                                              ' Muster
Cls
                                               ' Clear Screen
' ----- Port's und Pin's -----
' ----- LED-Konfigurationen -----
Config Alive pin = Output
' ------ Variablen und Werte -----
' ----- LED-Konfigurationen -----
Alive = Led_aus
                                               ' Alive-LED aus
' Und los gehts, hier noch die Restarbeiten
1_____
                                  _____
' ----- Freigabe aller Interrupts ----
Enable Interrupts
                                               ' Damit auch Empfang von Daten über Buf-
fer
 ----- Gosub's -----
```

```
**********
.
                        Hauptprogramm HD44780 1602 LCD 2x16
 ----- Hier ist die Programmhauptschleife -----
• _____
' Endlose Hauptschleife
Do
   ' ----- Teil 1: BASCOM eigene Funktionen -----
  Cls
                      1234567890123456
  Locate 1 , 1 : Lcd "***** Hallo ****"
  Wait 5
  Cls
  Home : Lcd "Cursor-Test"
  Locate 2 , 1 : Lcd "Mit Cursor"
  Cursor On Blink
  Wait 5
  Locate 2 , 1 : Lcd "Ohne Cursor"
Cursor Off Noblink
  Wait 5
  Cls
                      1234567890123456
  Locate 1 , 1 : Lcd "Userdefined Char"
  Locate 2 , 1 : Lcd Chr(0) : Locate 2 , 16 : Lcd Chr(0)
  Locate 2 , 3 : Lcd Chr(1) : Locate 2 , 14 : Lcd Chr(1)
  Locate 2 , 5 : Lcd Chr(0) : Locate 2 , 12 : Lcd Chr(0)
Locate 2 , 7 : Lcd Chr(1) : Locate 2 , 10 : Lcd Chr(1)
  Wait 5
   ' ----- Teil 2: Das ganze geht auch in Assembler -----
   ' Bildschirm löschen
                    +-- Kommando Bildschirm löschen
   temp1 = &B00000001
  !rCall _Lcd_control
  ' Cursor auf Startposition
  .
                 +--- Kommando Cursor auf Startposition
  .
   temp1 = &B00000010
  !rCall _Lcd_control
   ' Ausgabe von 1-8 aus Display via Assembler
  _temp1 = 49
!RCALL _Write_lcd
_temp1 = 50
                                                            ' Für Buchstabe 1
                                                            ' Für Buchstabe 2
   !RCALL _Write_lcd
_temp1 = 51
                                                            ' Für Buchstabe 3
  !RCALL _Write_lcd
_temp1 = 52
                                                            ' Für Buchstabe 4
  !RCALL _Write_lcd
_temp1 = 53
                                                            ' Für Buchstabe 5
  !RCALL _Write_lcd
_temp1 = 54
                                                            ' Für Buchstabe 6
  !RCALL _Write_lcd
_temp1 = 55
                                                            ' Für Buchstabe 7
  !RCALL Write_lcd
_temp1 = 56
                                                            ' Für Buchstabe 8
  !RCALL _Write_lcd
```

```
Wait 5
   ' Display ausschalten
                 +---- Kommando Display/Cursor
                  |+---- Display aus
                  ||+--- Cursor aus
                  |||+-- Cursor blinkt nicht
                  _temp1 = &B00001000
!rCall _Lcd_control
  Wait 5
   ' Display einsschalten
                  +---- Kommando Display/Cursor
                  |+---- Display ein
                  ||+--- Cursor ein
                  |||+-- Cursor blinkt
                  temp1 = &B00001111
  !rCall _Lcd_control
  Wait 5
   ' Display einsschalten
                 +---- Kommando Display/Cursor
                  |+--- Display ein
||+--- Cursor aus
                  |||+-- Cursor blinkt nicht
                  temp1 = &B00001100
  !rCall _Lcd_control
  Wait 5
  C1s
   ' So, und nun zum Schluss noch gezielt adressiertes Schreiben von Daten
   ' in den Speicher des LCD-Displays
   ' DDRAM adressen des Display (in HEX)
   ' Zeichen: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
' Zeile 1: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
' Zeile 2: 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
   ' DDRAM Adresse setzen
  ' +----- DDRAM Adresse setzen
' |++++++- DDRAM_Adresse
  _temp1 = &B10000000
!rCall _Lcd_control
                                                             ' Adresse 00 für 1. Zeichen Locate 1,1
   ' Zeichen schreiben
                                                             ' Für Buchstabe *
    temp1 = 42
  !RCALL Write lcd
   ' DDRAM Adresse setzen
  ' +----- DDRAM Adresse setzen
' |++++++-- DDRAM Adresse
             |++++++-- DDRAM_Adresse
   temp1 = \&B11000111
                                                             ' Adresse 47 für 2. Zeichen Locate 2,8
  !rCall _Lcd_control
  ' Zeichen schreiben
    temp1 = 42
                                                             ' Für Buchstabe *
  !RCALL _Write_lcd
   Wait 5
                                                             ' Hauptschleife
Loop
End
               ' Interruptroutinen
```

! * * * * * * * * * * * * * * * * * * *	******
' Interrupt-Service-Routine (Timerl): Sekunden_tick ' Routine zur Auswertung des Timer Interrupts	
Sekunden_tick:	
' Programmcode	
Timer1 = Timervorgabe Toggle Alive	' Timer neu laden ' Alive-LED toggeln lassen
Return ' End Sekunden_tick	
'*************************************	**************
' ****************** ' * LCD-Display * ' *********	
' KEINE	
'*************************************	*************
' ************************************	
' KEINE	
' Devices schließend und ggf. "Terminate Programm exec	cution"
' System halt End	'end program
' Definition von globalen Konstantenfeldern	
' KEINE	
·	
'#####################################	*****
'#####################################	######################################

Software 1: Code zur Ansteuerung des LCD-Displays

9.3.2 Prototyp LCD-Display-Ansteuerung

Abbildung 21: Prototyp LCD-Display-Ansteuerung mit Breadboard

9.4 <u>Miniaturlüfter</u>

Um den Temperatursensor ausreichend mit Luft zu umfluten habe ich entschieden, einen Miniatur-Axial-Lüfter stehend auf der Platine zu montieren. So soll für ausreichend Umluft gesorgt werden, auch wenn die Gehäuseteile für oben und unten keine zusätzlichen Lüftungsschlitze beinhalten.

Verwendet wird der folgende Lüftertyp:

SUN MF25100V2-1 Axial-Lüfter, 25x25x10mm, 5V, 5,1m³/h, 16dBA

Reichelt Elektronik Bestellnummer: SUN MF25100V2-1 Preis: 5,20 Euro

Tabelle 30: Miniatur-Lüfter

Die technischen Daten:

Technische Daten	
Allgemeines Typ Modell Geräuschpegel Motorpolzahl Anschlusspolzahl Approbation Temperatur, max.	Axial-Lüfter Vapolager 16 dB 4 2 UL Klasse A -10 +70 °C
Maße Länge Luftleistung Breite Höhe	25 mm 5,1 m³/h 25 mm 10 mm
Elektrische Werte Spannung DC Leistung Strom	5 V= 0,38 W 0,075 A
Ausführung Drehzahl Luftstrom	9800 U/min 3,0 CFM
Anschlüsse / Schnittstellen Anschluss	Litzen, abisoliert, verzinnt
Herstellerangaben Hersteller Artikelnummer des Herstellers Verpackungsgewicht RoHS EAN / GTIN	SUNON MF25100V2-1000U-A99 0.0079 kg konform 9900002606518

Die Beschaltung des Lüfters:

Die Beschaltung des Lüfters erfolgt mittels GPIO Pin des ATmega16 und einer Transistor-Schalt-Stufe. Eine Drehzahlregelung des Lüfters ist nicht vorgesehen. Die Drehzahl und damit die entstehende Lautstärke des Lüfters wurde zuvor am Laboraufbau ausprobiert und mit einem Vorwiderstand fest eingestellt.

Schaltbild 8: Beschaltung des Lüfters

Bauteile:

Stückliste: Lüfteransteuerung										
Widerstände Halbleiter										
R8	Metallschichtwiderstand 56 Ω	Q1 NPN Transistor BV547								
R9	Metallschichtwiderstand 1k1 Ω									
Sonstiges										
JP1	Jumper RM2,54 für Lüfteranschluss									
FAN	Miniatur-Lüfter MF25100V2-1									

Tabelle 31: Bauteile für LED-Ansteuerung

Ressourcenzuordnung zum ATmega16:

Nummer	Schaltbild		Ressource AT	mega16
1	FAN	PortD.7	FAN	[GPIO]

Tabelle 32: Ressourcenzuordnung ATmega16 für den Lüfter

9.5 <u>Temperatur – und Luftfeuchtigkeitssensor Sensirion SHT85</u>

9.5.1 Allgemeines zur Temperatur- und Feuchtigkeitsmessung

Zur Messwerterfassung von Temperatur und Luftfeuchtigkeit wird der Sensor SHT85 der Firma Sensirion eingesetzt.

Der Sensor ist ein Präzisionsfeuchtesensor SHT85: Digital, steckbar & vollständig kalibriert!

Abbildung 22: 9.5 Temperatur – und Luftfeuchtigkeitssensor Sensirion SHT8

Ein hochpräziser, steckbarer digitaler Feuchte- und Temperatursensor, welcher sich für diverse Anwendungen eignet und einfach auszutauschen ist.

Der digitale Feuchtesensor SHT85 besteht aus Sensirions bestem Feuchtesensor in seiner Klasse inklusive Steckverbindung für eine einfache Integration und einen einfachen Austausch. Er basiert auf dem hochpräzisen und langzeitstabilen SHT3x-Sensor, der das Herzstück der neuen Feuchtigkeits- und Temperaturplattform von Sensirion bildet. Das einzigartige Gehäusedesign ermöglicht die bestmögliche thermische Kopplung an die Umgebung und die Entkopplung von potenziellen Wärmequellen auf der Hauptplatine. Der SHT85 verfügt über eine PTFE-Membran, die die Sensoröffnung vor Flüssigkeiten und Staub gemäß IP67 schützt, ohne die Ansprechzeit des Feuchte- und Temperatursignals zu beeinträchtigen.

Damit wird der Einsatz des Sensors unter rauen Umgebungsbedingungen wie bei hoher Staubbelastung möglich. Die abschließende Genauigkeitsprüfung auf Produktebene gewährleistet beste Leistung und macht den SHT85 zur ultimativen Wahl selbst für die anspruchsvollsten Anwendungen.

Leistungsmerkmale:

- Größe
- 17.8 x 4.9 x 2.1 mm3
- Schnittstelle
- Spannungsbereich 2.15 5.5 V
- Energieverbrauch
 - Messbereich (RH) 0 100% relative humidity

12C

- Messbereich (T) -40 bis +105°C
- Ansprechzeit (RH) 8 sec (tau63%)

Interface:

•

4.8µW (bei 2.4 V, geringe Wiederholgenauigkeit, 1 Messung / s)

Abbildung 23: Das I2C Interface zum SHT85

Pin	Name	e Comments		
1	SCL	Serial clock; input only		
2	VDD	Supply voltage; input		
3	VSS	Ground		
4	SDA	Serial data; input / output		
4 SDA Serial data; input / output				

Abbildung 24: Die PIN-Zuordnung des SHT85

9.5.2 Beschaltung des Sensirion SHT85 Sensors

Zur Beschaltung des SHT85 gibt es nichts Besonderes zu erzählen oder zu vermerken. Im Gegensatz zu den anderen Derivaten SHT71 und SHT75 hält sich der SHT85 komplett an die I2C Spezifikation. Somit ist keine Sonderimplementierung notwendig und die Unterstützung auch aus BASCOM heraus mit dem HW-TWI-Interface ist vollumfänglich möglich.

Beschaltung:

Schaltbild 9: Die Beschaltung des SHT85 im Projekt

Bauteile:

Stückliste: Lüfteransteuerung				
Widerstände		Halbleiter		
R6, R7	Metallschichtwiderstand 10k Ω	IC2	Sensirion SHT85	

Tabelle 33: Bauteile für LED-Ansteuerung

Das Datenblatt zum SHT85 schreibt einen 100 nF Kondensator als Abblockkondensator vor. Dieser Kondensator ist bereits auf der kleinen Platine des Sensors mit verbaut und muss nicht mehr extern verschaltet werden.

Ressourcenzuordnung zum ATmega16:

Nummer	Schaltbild	Ressource ATmega16		
1	SDA	PortC.1	SDA	I2C Interface
2	SCL	PortC.0	SCL	I2C Interface

Tabelle 34: Ressourcenzuordnung ATmega16 für den SHT85

9.5.3 Wichtige Informationen und Notizen zum SHT85

Das komplette Datenblatt zum SHT85 ist im Anhang dieses Dokuments komplett hinzugefügt. Es wird an dieser Stelle darauf verwiesen.

Darüber hinaus gibt es zwei weitere Dokumente von Sensirion

- 1. Feature Comparison and High Level Integration Guide
- 2. SHTxx and STSxx Design Guide

welche über die Download-Seite von Sensirion

https://www.sensirion.com/de/download-center/feuchtesensoren/sht85-steckbarer-feuchtesensor-fuer-einfachen-austausch/

downloadbar sind.

9.5.4 BASCOM Treiber und Beispielcode für den SHT85

Der SHT85 wurde nicht separat in Betrieb genommen, sondern im Rahmen des Projekts direkt in der Zielumgebung programmiert. Daher gibt es keine separaten Code-Fragmente für die Inbetriebnahme.

An dieser Stelle wird auf den Gesamtcode des Projekts verwiesen. SHT85 relevante Teile sind entsprechend durch Kommentare gekennzeichnet.

9.6 <u>LED-Zuordnung Schaltplan</u>

Im Projekt HygroTherm werden 2 LEDs verwendet. Eine 3mm Low-Current-LED GRÜN welche ohne Transistorstufe mittels Metallschichtvorwiderstand direkt an einem GPIO-Pin des ATmega16-Controllerst betrieben wird und den Betriebszustand des Controllers durch Blinken anzeigt. Und eine weitere 3mm Low-Current-LED ROT welche direkt mit der Versorgungsspannung betrieben wird und das Anliegen von Betriebsspannung signalisiert.

Die folgende Tabelle zeigt die LED's des Projekts beschrieben und der HW-Ressource im Schaltplan inkl. Funktion zugeordnet:

LED	Funktion	Abkürzung	Farbe
1	Alive LED – 3 mm	LED1	GREEN
2	Power LED – 3mm	LED2	ROT

Tabelle 35: LED-Zuordnung Schaltplan

Die grüne 5mm Alive LED zeigt an, dass der Controller bzw. das System normal arbeiten, dabei blinkt die LED im Sekundenrhythmus.

Beschaltung:

Schaltbild 10: Beschaltung LED's

Bauteile:

Stückliste: LED-Ansteuerung				
Widerstände		Halbleiter		
R1, R2	Metallschichtwiderstand 1k5 Ω	LED1	Standard LED, 5mm, Green	
		LED1	Standard LED, 5mm, Red	

Tabelle 36: Bauteile für LED-Ansteuerung

Ressourcenzuordnung zum ATmega16:

Nummer		Schaltbild	Ressource ATmega8	
1	ALIVE	ALIVE	PortB.0	[PB0] (GPIO Output)

Tabelle 37: Ressourcenzuordnung für LED-Ansteuerung

10 Mechanik

Abbildung 25: Platine des HygroTherm

Abbildung 26: 2 Lasergeschnittene Plexiglasplatten als Gehäuseteile

Abbildung 27: Die bestückte Platine

Abbildung 28: Das fertige Gerät

Die Plexiglasplatten des Gehäuses wurden von der Firma

M.Schön eDesign GmbH Geschäftsführer: Michael Schön Im Lipperfeld 3F 46047 Oberhausen

Telefon: 0208 8215975 Telefax: 0208 8215976 E-Mail: info@plexilaser.de

Whatsapp +49 208 8215975

angefertigt. Die dafür notwendigen Grunddaten wurden in MS Visio angelegt und als Visio-Dokument bzw. als PDF an die Firma plexilaser gesendet.

Abbildung 29: MS Visio Gehäusezeichnung für plexilaser

11 Bauteile und Bauteilbeschaffung

Für das Prototyping und die Inbetriebnahme der im obigen Kapitel "Grundlagen" beschriebenen Einzelthemen werden die Einzelteile in Verbindung mit einem Breadboard aufgebaut und in Betrieb genommen.

Die folgenden Stücklisten geben einen Überblick über die benötigten Bauelemente und ergeben gleichzeitig die Bestelllisten von Conrad Electronic, Reichelt Electronic, Amazon und ggf. eBay.

Platine von Firma Aisler:

Stk.	Beschreibung	Bestellnummer	Einzelpreis	Gesamtpreis		
	РСВ					
3	Projektplatinen		32,02	32,02		

Tabelle 38: Bauteile – Firma Aisler

Platine von Firma plexilaser:

Stk.	Beschreibung	Bestellnummer	Einzelpreis	Gesamtpreis		
	PCB					
2	Gehäuseteile 3mm Plexiglas gelasert (inkl. Ver-		24,80	24,80		
	sand)					

Tabelle 39: Bauteile – Firma Aisler

Bauelemente über ebay:

Stk.	Beschreibung	Bestellnummer	Einzelpreis	Gesamtpreis
Display				
1	ERM1602SBS-6	ERM1602SBS-6	3,91	3,91
	5V Blue 16x2 LCD Module Character Display			
	w/Tutorial, HD44780, Bezel, Backlight			

Tabelle 40: Bauteile – ebay

Bauelemente Mouser Elektronik:

Stk.	Beschreibung	Bestellnummer	Einzelpreis	Gesamtpreis	
Halbleiter					
1	Humidity and temperature sensor Sensirion SHT85	403-SHT85	27,45	27,45	

Tabelle 41: Bauteile – Firma Mouser

Bauelemente Amazon:

Stk.	Beschreibung	Bestellnummer	Einzelpreis	Gesamtpreis	
Sonstiges					
1x	Cylewet vertikaler Schiebeschalter / Wech- selschalter, 12 mm	CLW1016	0,84	0,84	

Tabelle 42: Bauelemente Amazon

Bauelemente Reichelt Elektronik:

Stk.	Beschreibung	Bestellnummer	Einzelpreis	Gesamtpreis			
Kondensatoren							
3	Vielschicht-Keramikkondensator 100nF 50 VDC	Z5U-2,5 100N	0,05	0,15			
1	Keramikkondensator 47nF	KERKO 47N	0,09	0,09			
	Wider	stände					
1	Widerstand, Metallschicht, 56,0 Ohm, 0207, 0,6 W, 1%	METALL 56,0	0,082	0,082			
1	Widerstand, Metallschicht, 150 Ohm, 0207, 0,6 W, 1%	METALL 150	0,082	0,082			
1	Widerstand, Metallschicht, 1,20 kOhm, 0207, 0,6 W, 1%	METALL 1,20K	0,082	0,082			
2	Widerstand, Metallschicht, 1,50 kOhm, 0207, 0,6 W, 1%	METALL 1,50K	0,082	0,164			
1	Widerstand, Metallschicht, 4,70 kOhm, 0207, 0,6 W, 1%	METALL 4,70K	0,082	0,082			
2	Widerstand, Metallschicht, 10,0 kOhm, 0207, 0,6 W, 1%	METALL 10,0K	0,082	0,164			
	Halb	leiter	•				
1	Diode 1N4148	1N 4148	0,02	0,02			
1	LED 3mm, Standard, Grün	LED 3MM 2MA GN	0,12	0,12			
1	LED 3mm, Standard, Rot	LED 3MM 2MA RT	0,12	0,12			
1	ATMEGA 16-16 DIP MCU, ATmega AVR RISC, 16 KB, 16 MHz, PDIP-40	ATMEGA 16-16 DIP	2,40	2,40			
1	NPN Transistor BC547B	BC 547B	0,02	0,02			
	Sons	stiges					
1	Kurzhubtaster 6x6mm, Höhe: 4,3mm, 12V, verti- kal	TASTER 3301	0,15	0,15			
1	Axial-Lüfter, 25x25x10mm, 5V, 5,1m ³ /h, 16dBA	SUN MF25100V2-1	5,20	5,20			
1	Stiftleiste, gewinkelt, RM 2,54 – 6-polig	SL 1X50W 2,54	0,97	0,97			
1	MA03-2 für ISP06	SL 2X50G 2,54	0,85	0,85			

Tabelle 43: Bauelemente Reichelt Elektronik

Bauelemente Conrad Electronic:

Stk.	Beschreibung	Bestellnummer	Einzelpreis	Gesamtpreis		
Sonstiges						
1	Weltron WEL3296-W-102-LF Spindeltrim- mer 25-Gang, in-line linear 0.5 W 1 kΩ 9000 ° 1 St.	447522 – 62	0,62	0,62		
1	Weltron WEL3296-W-103-LF Spindeltrim- mer 25-Gang, in-line linear 0.5 W 10 kΩ 9000 ° 1 St.	447564 – 62	0,62	0,62		
1	Mini USB-Typ B liegend 5-polig WR-COM Buchse, Einbau horizontal WR-COM Würth Elektronik	1088421 – 62	2,32	2,32		

Tabelle 44: Bauelemente Conrad Electronic

Die vorausberechneten Materialkosten belaufen sich auf ca. 71,306 Euro.

12 Hardware

12.1 Festlegung von Netzklassen im Projekt

Für die Umsetzung der PCB in EAGLE werder	n die folgenden Netzklassen definiert:
---	--

P Netzklassen				
Nr	Name	Width	Drill	Clearance
0	default	15mil	Omil	0.3mm
01	Digital	15mil	Omil	0.3mm
0 2	Analog	15mil	Omil	0.3mm
03	PowerSupply	20mil	Omil	0.3mm
04		Omil	Omil	Omil
0 5		Omil	Omil	Omil
0 6		Omil	Omil	Omil
07		Omil	Omil	Omil
0 8		Omil	Omil	Omil
0 9		Omil	Omil	Omil
0 10		Omil	Omil	Omil
0 11		Omil	Omil	Omil
0 12		Omil	Omil	Omil
0 13		Omil	Omil	Omil
0 14		Omil	Omil	Omil
0 15		Omil	Omil	Omil
			ОК	>> Abbrechen

Abbildung 30: Definition der Netzklassen

Diese Vorgaben führen bei einem einfachen Schaltbild zur folgenden Umsetzung auf dem Board:

Abbildung 31: Demoboard Netzklassen

12.2 Die PCB zum Projekt HygroTherm

12.2.1 Schematic

Schaltbild 12: Schaltbild HygroTherm - Sheet 1

Schaltbild 14: Schaltbild HygroTherm - Sheet 3

12.2.2 Layout, Layer und Bestückung

Abbildung 32: PCB HygroTherm – Layout gesamt

Abbildung 33: PCB HygroTherm – Top Layer

Abbildung 34: PCB HygroTherm – Bottom Layer

Abbildung 35: PCB HygroTherm – Bestückung Top Layer

Abbildung 36: PCB HygroTherm – Pads und Vias

Abbildung 37: PCB HygroTherm – Restricted Areas

12.2.3 Eagle-BOM

Pos.	Bauteile	Menge	Wert	Device	Package
1.	C1, C2, C3	3	100nF	CAPACITOR050-025X075	C050-025X075
2.	R3	1	10k	R-TRIMM3296	RTRIM3296
3.	R6, R7	2	10k	RESISTOR0207/10	0207/10
4.	R1	1	150R	RESISTOR0207/10	0207/10
5.	D1	1	1N4148	DIODE 1N4148	DO35-10
6.	R2	1	1k	R-TRIMM3296	RTRIM3296
7.	R9	1	1k2	RESISTOR0207/10	0207/10
8.	R4, R5	2	1k5	RESISTOR0207/10	0207/10
9.	LED1	1	3mm Green	LED3MM	LED3MM
10.	LED2	1	3mm Red	LED3MM	LED3MM
11.	C4	1	47n	CAPACITOR050-025X075	C050-025X075
12.	R10	1	4k7	RESISTOR0207/10	0207/10
13.	R8	1	56R	RESISTOR0207/10	0207/10
14.	Q1	1	BC547	NPN Transistor BC547	ТО92
15.	JP1	1	FAN	JP1E JUMPER (NICHT bestückt!)	JP1
16.	SV1	1	ISP6	MA03-2, PIN HEADER	MA03-2
17.	U\$1	1	LCD	LCD-HD447804-HOLES16X2-4- HOLES	LCD-16X2-4HOLES
18.	IC1	1	MEGA16-P	ATMEGA16-P MICROCONTROL- LER	DIL40
19.	S1	1	On/Off	CLW1016 SLIDING SWITCH	CLW1016
20.	S2	1	Reset	Kurzhubtaster 6x 6mm MJTP1230	MJTP1230
21.	IC2	1	SHT85	Sensirion SHT85	SHT85
22.	FTDI1	1	Trace	PIN HEADER - FTDS Friend	1X06-BIG
23.	CN1	1	USB_VCC	USBWüRTH USB Connectors	USB-MINIB-WR

Tabelle 45: Eagle BOM für das Projekt HygroTherm

Folgende Bauteile werden noch außerhalb von Eagle benötigt:

Pos.	Bauteile	Menge	Wert	Device
1.		4	Aluminiumhülsen 3,5 cm oben	
2.		4	Silikon-Füße	
3.		2	Gehäuseteile Plexiglas	
4.		4	Abstandshülsen für LCD-Montage	
5.		1	Platine	
6.		4	M3 Inbus Schrauben 50mm	
7.		4	Abstandshülsen 5mm für PCB unten	

Tabelle 46: Weitere Bauteile für das Projekt HygroTherm

12.2.4 Das Board

Abbildung 38: PCB HygroTherm TOP

Abbildung 39: PCB HygroTherm BOTTOM

Abbildung 40: PCB TOP fertig bestückt
12.3 <u>Die fertige Hardware</u>

Abbildung 41: Die fertige Platine

13 Software

13.1 Systemfestlegungen und Definitionen

13.1.1 Timer Festlegungen

Die Timer im Gesamtsystem haben entsprechend der Priorität die folgende Reihenfolge:

- 1. Timer0 8-Bit Timer
- 2. Timer1 16-Bit Timer
- 3. Timer2 8-Bit Timer

<u>Timer0:</u>

Nicht verwendet!

<u>Timer1:</u>

Der Timer1 ist im ATmega16 der Timer mit der mittleren Priorität. Mit seiner Hilfe wird ein SW-Timer aufgebaut. Der Timer1 versorgt das Gesamtsystem mit einem 1-Sekunden-Timertick und sorgt für das Toggeln der Betriebs-LED.

<u>Timer2:</u>

Nicht verwendet!

13.2 Verwendete SW

Zur Erstellung dieses Projekts kam folgende Software zum Einsatz:

- Workstation DELL XPS8930: Betriebssystem Windows 10 Pro 64 Bit
- Notebook DELL Inspiron 17R SW: Betriebssystem Windows 10 Pro 64 Bit
- BASCOM-AVR Basic Compiler BASCOM 2.0.8.2
 MCS Electronics
- EAGLE 7.7.0 Standard NON-PROFIT
- ATMEL AVR Studio 7.0

Zur Erstellung dieses Projekts kam folgende HW-Umgebung und SDK's zum Einsatz:

- Breadboards mit Steckverbindern
- ATMEL ISP-Programmer AVRISP mkII
- Fertiges Platinen Layout mit Hilfe von Eagle und Herstellung durch Aisler
- Labornetzteil Rohde&Schwarz NGE102B
- Oszilloskop Tektronix MSO2024B

13.3 Der Source-Code zum Projekt HygroTherm

'######################################	*##########	######	+++++++++++++++++++++++++++++++++++++++	#######	#######	#####	#
HygroTherm.BAS				S	tand 16.	02.202	0
·				(C) Marku	s Fuld	le
' Programm für Thermometer und H	lygrometer	auf Bas	sis eine	s Sensir	ion SH85		
' Das Projekt verfügt über die f	olgenden e	inzelne	en Funkt	ions- un	.d		
Teilkomponenten:							
- Spannungsversorgung für	+5V S (inkl IS	P 8923	2 und F	eset)			
- LCD-Display 16x2	(INKI, 18	1, 1020		.0300)			
' - LED-Anzeigen für Funktic	onsanzeige						
- I2C Sensor Sensirion SHT	85						
**************************************	*#########	*######	****	#######	****	#####	#
Allgemeine Zusatzinformationer	ı zu Progra	ummbegin	nn				-
' DDRAM Adressen des Display (ir	HEX)						
Vaicher, 1 0 2 4 5	6 7	0 0	10 11	10 10	1/ 15	16	
Zeile 1. 00 01 02 03 04	05 06 0	8 9 17 08	10 11 09 0A	12 13 0B 0C	14 15 0D 0E	10 0F	
'Zeile 2: 40 41 42 43 44	45 46 4	7 48	49 4A	4B 4C	4D 4E	4 F	
HD44780 Befehlssatz							
'Befehl	Rs Rw	D7	D6 D5	D4	D3 D2	D1	D0
' Bildschirminhalt Löschen	0 0	0	0 0	0	0 0	0	1
' Cursor Auf Startpos	0 0	0	0 0	0	0 0	1	Х
' Modus Festlegen	0 0	0	0 0	0	0 1	I/D	S
' Display/Cursor ' Cursor/Display Schieben	0 0	0		0	L D	C V	B
' Funktionen	0 0	0	0 1	DT.	N F	X	X
' Cgram Adresse Setzen	0 0	0	1 +	CGRA	M-Adress	e	+
' Ddram Adresse Setzen	0 0	1	+	DDRA	M-Adress	е	+
' Adresse/Status Lesen	0 1	BF	+	CG-/DDRA	M-Adress	е	+
' Daten In Ddram/Cgram Schreiber	1 0	+		Da	ten		+
' Daten Aus Ddram/Cgram Lesen	1 1	+		Da	ten		+
' Kodierung der Steuerbits							
' Bit 0 = LOW	 ++	1 = H	HIGH				
' I/D Cursorposition dekreme	entieren	Curso	prpositi	on inkre	mentiere	n	
S Displayinhalt fest		Displ	layinhal	t weiter	schieben		
D Display aus		Displ	lay an				
B Cursor blinkt nicht		Curse	or blink	t			
S Cursor brunke mene Cursor brunke S/C Cursor bewegen Displavinhalt schieben							
' R/L Nach links schieben	i i i i i i i i i i i i i i i i i i i	Nach	rechts	schieben	L		
' DL 4-Bit Interface		8-Bit	t Interf	ace			
N 1-zeiliges Display		2/4-z	zeiliges	Display	,		
· F 5×/-Font		5×10-	-Font	iat			
or raini ronmiandos annenme	;11	ISU D	Jeschaft	±gι			
' Description of the SHT85 status register							
' Bit Field description					De	fault ======	value
15 Alert pending status					'1	•	
' '0': no pending alerts	alor+						
' at reast one pending	, arer't						
'14 Reserved					'0		
'							

© Markus Fulde, 2020

'0' ' 13 Heater status '0' : Heater OFF '1' : Heater ON , ------' 12 Reserved 'O' _____ ۰. 101 1 RH tracking alert '0' : no alert '1' . alert _____ _____ ' 10 T tracking alert 101 '0' : no alert '1' . alert _____ _____ 9:5 Reserved 'xxxxx' _____ _____ **'**4 System reset detected '0' '0': no reset detected since last 'clear status register' command '1': reset detected (hard reset, soft reset command or supply fail) ' 3:2 Reserved '00' _____ 101 1 Command status '0': last command executed successfully '1': last command not processed. It was either invalid, failed the integrated command checksum _____ '0' ' 0 Write data checksum status '0': checksum of last write transfer was correct '1': checksum of last write transfer failed _____ ' Compilerinstruktionen und Compilerdirektiven \$regfile = "m16def.dat" ' Definitionsdatei für ATmega128 laden \$crystal = 8000000 ' Quarzfrequenz 8 MHz intern festlegen ' HW-Stack auf 128 Bytes erweitern \$hwstack = 128 \$swstack = 64' SW-Stack auf 64 Bytes erweitern \$framesize = 80 ' Framesize auf 80 Byte festlegen ' Serielle Schnittstelle wird für Tracedatenausgabe verwendet ' Baudrate für RS232 auf 38400 Bauf **Sbaud = 38400** festlegen ' Einbinden der I2C-Library für das Hardware-Interface des ATmega \$lib "i2c twi.lbx" ' we do not use software emulated I2C but the $\mathrm{T}\overline{\mathrm{W}}\mathrm{I}$ Instruct the compiler to generate very short Enable pulse for VFO displays. ' \$lcdvfo !! NOT USED for 1602 Display in this Project because of identified issues during cold boot *_____ ' Definition von Ressourcen ' ----- LED: Anzeige-LED's -----' Die Alive-LED wird sekündlich getoggelt um zu zeigen, dass der µC noch lebt Alive_pin Alias Pinb.0 GPIO für Alive-LED (für DDR oder Input) Alive Alias Portb.0 ' GPIO für Alive-LED (für Output oder Pullup) ' ----- LCD-Display -----' LCD-Display Db0_pin Alias Porta.0 ' GPIO für LCD Pin4 ' GPIO für LCD Pin4 Db1_pin Alias Porta.1 Db2 pin Alias Porta.2 ' GPIO für LCD Pin4

```
' GPIO für LCD Pin4
Db3_pin Alias Porta.3
                                                             ' GPIO für LCD Pin4
Db4 pin Alias Porta.4
                                                             ' GPIO für LCD Pin5
Db5 pin Alias Porta.5
Db6 pin Alias Porta.6
                                                            ' GPIO für LCD Pin6
                                                             ' GPIO für LCD Pin7
Db7 pin Alias Porta.7
                                                            ' Gesamter PORTA ist Datenport
Lcd data port Alias Porta
Lcd rs pin Alias Portb.3
                                                             ' GPIO für LCD RS
Lcd_e_pin Alias Portb.2
                                                             ' GPIO für LCD E
' Der RW Pin kann auch direkt mit GND verbunden werden da BASCOM nicht vom
' LCD lesen kann. Hierzu wäre eine 3rd-Party-LIB notwendig.
Lcd_rw_pin Alias Pinb.1
                                                            ' GPIO für LCD RW
Lcd rw Alias Portb.1
' ----- I2C: Two wire interface -----
' TWI-Bus Hardware für Ultraschallmodul
                                                            ' TWI Data = SDA-Pin (für Output oder
Sda port Alias Portc.1
PullUp)
Scl port Alias Portc.0
                                                             ' TWI Clock = SCL-Pin (für Output oder
PullUp)
' ----- FAN: Lüfter -----
Luefter pin Alias Pind.7
                                                            ' GPIO für Lüftersteuerung (für DDR oder
Input)
                                                             ' GPIO für Lüftersteuerung (für Output
Luefter Alias Portd.7
oder Pullup)
                               _____
' Definition von Konstaten
*_____
' ----- Für Testumgebung bzw. Traceausgaben -----
                                                            ' Flag für Testmodus Allgemeinsystem
Const Main testmodus = 1
Const Sht_testmodus = 1
                                                             ' Flag für Testmodus des Sensirion Sen-
sors
' ----- Allgemeine Systemkonstanten -----
' Tatsächliches Allgemeines
Const False = 0
Const True = 1
Const Pegel_low = 0
Const Pegel high = 1
Const Led_aus = 0
Const Led ein = 1
' Zeitvorgabe für Sekunden-Timer
Const Timervorgabe = 34286
                                                            ' Timer von 1 Sekunden (SekundenTick)
' ----- SHT85 Humidity and Temperatur Sensor -----
' SHT: Adressen für das Sensirion Sensor-Modul
' Standardadresse ist &HE0 = &B11100000
Const Sht_address_write = &B10001000
Const Sht_address_read = &B10001001
                                                            ' Adresse des SHT85 = &H44 (schreiben)
' Adresse des SHT85 = &H45 (lesen)
' Measurement Commands for Single Shot Data Acquisition Mode
Const Sht_cmd_single_rep_high_msb = &H24
Const Sht_cmd_single_rep_high_lsb = &H00
                                                             ' repeatability High
                                                             ' repeatability Medium
Const Sht cmd single rep medium msb = &H24
Const Sht cmd single rep medium lsb = &HOB
Const Sht cmd single rep low msb = &H24
                                                             ' repeatability Low
```

```
Const Sht_cmd_single_rep_low_lsb = &H16
' Measurement Commands for Periodic Data Acquisition Mode
Const Sht cmd cycle 05 rep high msb = &H20
                                                                       ' 0.5 mps repeatability High
Const Sht_cmd_cycle_05_rep_high_lsb = &H32
Const Sht_cmd_cycle_05_rep_medium_msb = &H20
                                                                       ' 0.5 mps repeatability Medium
Const Sht_cmd_cycle_05_rep_medium_msb = &H24
Const Sht_cmd_cycle_05_rep_medium_lsb = &H24
Const Sht_cmd_cycle_05_rep_low_msb = &H20
Const Sht_cmd_cycle_05_rep_low_lsb = &H2F
                                                                       ' 0.5 mps repeatability Low
Const Sht cmd cycle 1 rep high msb = &H21
                                                                       ' 1 mps repeatability High
Const Sht_cmd_cycle_1_rep_high_lsb = &H30
Const Sht cmd cycle 1 rep medium msb = &H21
Const Sht cmd cycle 1 rep medium lsb = &H26
                                                                       ' 1 mps repeatability Medium
Const Sht cmd cycle 1 rep low msb = &H21
                                                                      ' 1 mps repeatability Low
Const Sht cmd cycle 1 rep low lsb = &H2D
                                                                      ' 2 mps repeatability High
Const Sht_cmd_cycle_2_rep_high_msb = &H22
Const Sht_cmd_cycle_2_rep_high_lsb = &H36
Const Sht_cmd_cycle_2_rep_medium_msb = &H22
                                                                      ' 2 mps repeatability Medium
Const Sht_cmd_cycle_2_rep_medium_lsb = &H20
Const Sht_cmd_cycle_2_rep_low_msb = &H22
                                                                       ' 2 mps repeatability Low
Const Sht_cmd_cycle_2_rep_low_lsb = &H2B
                                                                       ' 4 mps repeatability High
Const Sht cmd cycle 4 rep high msb = &H23
Const Sht_cmd_cycle_4_rep_high_lsb = &H34
Const Sht_cmd_cycle_4_rep_medium_msb = &H23
                                                                       ' 4 mps repeatability Medium
Const Sht cmd cycle 4 rep medium lsb = &H22
Const Sht_cmd_cycle_4_rep_low_msb = &H23
Const Sht_cmd_cycle_4_rep_low_lsb = &H29
                                                                       ' 4 mps repeatability Low
                                                                       ' 10 mps repeatability High
Const Sht cmd cycle 10 rep high msb = &H27
Const Sht cmd cycle 10 rep high 1sb = &H37
Const Sht_cmd_cycle_10_rep_medium_msb = &H27
Const Sht_cmd_cycle_10_rep_medium_lsb = &H21
                                                                       ' 10 mps repeatability Medium
                                                                      ' 10 mps repeatability Low
Const Sht_cmd_cycle_10_rep_low_msb = &H27
Const Sht cmd cycle 10 rep low lsb = &H2A
' Readout of Measurement Results for Periodic Mode
Const Sht cmd fetch data msb = &HE0
                                                                      ' Fetch Data command for Periodic Mode
Const Sht cmd fetch data lsb = &H00
' ART Command
Const Sht cmd art msb = &H2B
                                                                       ' accelerated response time
Const Sht_cmd_art_lsb = &H32
' Break command / Stop Periodic Data Acquisition Mode
Const Sht cmd break msb = &H30
                                                                       ' Break command
Const Sht_cmd_break_lsb = &H93
' Reset
Const Sht cmd reset msb = &H30
                                                                       ' Soft Reset / Re-Initialization
Const Sht_cmd_reset_lsb = &HA2
' General i2c Reset
Const Sht_adr_i2c_reset = &H00
                                                                      ' Reset through General Call
Const Sht cmd i2c reset = &H06
' Heater
Const Sht cmd heater msb = &H30
                                                                      ' Heater command
                                                                      ' Heater Enable
Const Sht cmd heater lsb enable = &H6D
Const Sht cmd heater lsb disable = & H66
                                                                      ' Heater Disabled
' Read Out of status register
Const Sht cmd status msb = &HF3
                                                                     ' Status Register
Const Sht cmd status lsb = &H2D
' Clear Status Register
```

```
Const Sht_cmd_clear_status_msb = &H30
                                                              ' Clear Status Register
Const Sht_cmd_clear_status_lsb = &H41
' Command to read out the Serial Number
                                                             ' Get Serial Number
Const Sht_cmd_read_serial_msb = &H36
Const Sht cmd read serial lsb = &H82
' SHT command - read idle Zeit
Const Sht t idle = 2
                                                             'Idle Zeit nach command bis read
' SHT Messzyklus-Zeit
                                                             ' Zeit in Sekunden
Const Sht_measurement_speed = 30
                                                             ' zeit in ms
Const Sht t meas = 20
' ----- FAN: Luefetersteuerung -----
Const Luefter ein = 1
Const Luefter_aus = 0
                                        _____
' Definition von Variablen und Datentypen
·_____
                                         _____
' ----- Allgemeine systembedingte globale Variablen -----
' temporäre globale Arbeitsvariablen
Dim Temp_byte_1 As Byte
                                                              ' Temporäre Byte-Variable 1
Dim Temp_byte_2 As Byte
                                                              ' Temporäre Byte-Variable 2
Dim Temp word 1 As Word
                                                              ' Temporäre Word-Variable 1
Dim Temp word 2 As Word
                                                              ' Temporäre Word-Variable 2
Dim Temp string As String * 32
                                                              ' Temporärer String
' ----- Systemvariablen für SHT85 -----
' This is how it will be stored in SRAM
' 7----- Sht serial number ----->
| snb_0 | snb_1 | snb_23| snb_3 |
· +----
                 -+---
'But when you print it with print bin(Variable) you will see it as
' <----- Sht_serial_number ----->
' +-----
                     ----+
              ----+--
' | snb 3 | snb 2 | snb 1 | snb 0 |
Dim Sht_crc_byte As Byte
                                                              ' Arbeitsvaraible für Checksumme
Dim Sht_error_flag As Byte
                                                              ' Flag für Fehler während I2C Kommunika-
tion
                                                             ' 16 Bit Status Flags des SHT85
Dim Sht_status_flags As Word
Dim Sht status lsb As Byte At Sht status flags Overlay
                                                             ' LSB
Dim Sht_status_msb As Byte At Sht_status_flags + 1 Overlay ' MSB
Dim Sht serial number As Dword
                                                             ' SHT86 Serial number
Dim Sht_snb_0 As Byte At Sht_serial_number Overlay
Dim Sht_snb_1 As Byte At Sht_serial_number + 1 Overlay
Dim Sht_snb_2 As Byte At Sht_serial_number + 2 Overlay
                                                             ' LSB
                                                             ' MSB
Dim Sht_snb_3 As Byte At Sht_serial_number + 3 Overlay
Dim Sht temperature word As Word
Dim Sht_temperature_lsb As Byte At Sht_temperature_word Overlay
Dim Sht_temperature_msb As Byte At Sht_temperature_word + 1 Overlay
                                                                      ' LSB
                                                                          'MSB
Dim Sht humidity word As Word
```

```
Dim Sht_humidity_lsb As Byte At Sht_humidity_word Overlay ' LSB
Dim Sht_humidity_msb As Byte At Sht_humidity_word + 1 Overlay
                                                               ' MSB
Dim Sht temperature float As Single
                                                        ' Berechnete Temperatur
Dim Sht humidity float As Single
                                                        ' Berechnete Feuchtigkeit
' Prototyping
.____
         _____
' ======= Funktionen ========
' ----- Allgemeine Funktionen -----
' ======= Sub-Funktionen ========
' ----- Fehlerbehandlung -----
Declare Sub Sht_error_handling(byval Error string As String )
*_____
' Konfiguration und Basiseinstellungen (Projekt und Testumgebung)
       _____
' ----- CONFIG -----
' ----- Timer -----
' Konfiguration eines Timers für 1 Sekunden Timer-Tick (Scheduler und Alive)
Config Timer1 = Timer , Prescale = 256
                                                        ' Timer 1 verwenden
On Timer1 Sekunden tick
                                                        ' Interrupt Routine
Timer1 = Timervorgabe
Enable Timer1
                                                        ' Interrupt für Sekunden-Tack
' ----- LCD Display -----
' RW-Ping auf LOW=GND schalten (wird nicht weiter benötigt)
Config Lcd rw pin = Output
Lcd rw = Pegel low
' Konfiguration LCD Display
Config Lcdpin = Pin , Port = Lcd_data_port , E = Lcd_e_pin , Rs = Lcd_rs_pin
Config Lcdbus = 8
                                                        ' LCD arbeitet über 8-Bit
Config Lcd = 16 \star 2
                                                        ' Display is 2-zeilig mit 16 Zeichen
                                                        ' LCD initialisieren
Initlcd
Waitms 100
                                                        ' 100ms nach Init warten
                                                        ' Blinkenden Cursor abschalten
Cursor Off Noblink
Cls
' ----- Sensirion SHT85 Sensor -----
' Konfiguration I2C-Bus
                                                        ' TWI SDA = Data
Config Sda = Sda_port
Config Scl = Scl port
                                                        ' TWI SCL = Clock
                                                        ' we need to set the pins in the proper
I2cinit
state
' Achtung: Die genaue TWI Frequenz des SRF08 ist nicht klar und ergeht auch nicht aus
' dem Datenblatt. Der referenzierte Speicherbaustein kann 100 kBaud. Aus diesem Grund
' wird die Geschwindigkeit zunächst auf diese Geschwindigkeit begrenzt.
Config Twi = 100000
                                                        ' Taktfrequenz 100 kBaud
' TWI gleich einschalten, das macht BASCOM ansonsten erst beim I2CStart
Twcr = &B00000100
                                                        ' nur TWEN setzen
```

```
----- Port's und Pin's -----
' ----- LED-Konfigurationen -----
Config Alive pin = Output
                                                ' GPIO für Alive-LED ist Output
' ----- Luefeter-Steuerung -----
Config Luefter pin = Output
                                                ' GPIO für Lüfter auf Output schalten
Luefter = Luefter_aus
                                                ' Lüfter ausschalten
 ----- Variablen und Werte -----
Sht_error_flag = False
_____
' Und los gehts, hier noch die Restarbeiten
                                   _____
 In Abhängigkeit der Konstante Traceausgabe schreiben
#if Main testmodus
  ' Systemstart auf RS232 ausgeben
  Print ""
  Print ""
  Print "******** Iginiton sequence start *********"
#endif
' ----- Freigabe aller Interrupts ----
' Timer aktivieren und Interrupts freigeben
Enable Timer1
Enable Interrupts
                                                ' Damit auch Empfang von Daten über Buf-
fer
 ----- Gosub's -----
 ***********
                Hauptprogramm Thermometer Gygrometer
* *****
' Disclaimer auf LCD anzeigen
Cls
                                                ' Clear Screen
                                                ' Place the cursor at the specified line
Home
at location 1.
                1234567890123456
Locate 1 , 1 : Lcd "HygroTherm V1.0"
Locate 2 , 1 : Lcd "Markus Fulde '20"
Wait 3
Cls
' Seriennummer des SHT85 auslesen und anzeigen
Gosub Sht read serial number
If Sht error flag = True Then
                       1234567890123456
  Call Sht_error_handling( "ReadSerialNumber" )
End If
' Statusbytes des SHT85 auslesen und anzeigen
Gosub Sht read status bytes
If Sht_error_flag = True Then
                      1234567890123456
```

```
Call Sht_error_handling( "ReadStatusFlags " )
End If
               1234567890123456
Locate 1 , 1 : Lcd "Serial: " ; Hex(sht serial number)
Locate 2 , 1 : Lcd Bin(sht_status_flags)
Wait 3
Cls
               1234567890123456
Locate 1 , 1 : Lcd "Temp [" ; Chr(223) ; "C]: 00.0"
Locate 2 , 1 : Lcd "rel.F. [%]: 00.0"
' Lüfter einschalten
' Trace
  Print ""
#endif
                                             ' Trace
Luefter = Luefter_ein
 _____
 ----- Hier ist die Programmhauptschleife -----
. _____
' Controll-Output schreiben und los's gehts
                                             ' Trace
#if Main_testmodus
  Print ""
  Print "** Enter MainLoop **"
  Print ""
                                             ' Trace
#endif
Do
  ' ----- Messung -----
  ' SHT85 Messung durchführen
  Gosub Sht measurement
  If Sht_error_flag = True Then
                        1234567890123456
    Call Sht error handling ( "SHT85Measurement-" )
  End If
  ' ----- Auswertung -----
  ' Messwerte auf Display schreiben
  If Sht_temperature_float <= -10 Then</pre>
    Locate 1 , 12 : Lcd Fusing(sht_temperature_float , "###.#" )
  Else
    Locate 1 , 13 : Lcd Fusing(sht temperature float , "##.#" )
  End If
  Locate 2 , 13 : Lcd Fusing(sht_humidity_float , "##.#" )
  ' ----- Warten -----
  ' Bis nächste Messunge warten
  Wait Sht_measurement_speed
Loop
End
                                             ' Terminate program execution.
•
' Interruptroutinen
                    ****
```

```
_____
        _____
' Interrupt-Service-Routine (Timer1): Sekunden_tick
' Routine zur Auswertung des Timer Interrupts
!-----
                             _____
Sekunden tick:
 ' ----- Programmcode -----
                                    ' Timer neu laden
 Timer1 = Timervorgabe
                                    ' Alive-LED toggeln lassen
 Toggle Alive
Return
'-- End Sekunden tick ------
•
' Funktionen
        •
' Subroutinen
       ' * SHT85: Sensirion *
                          _____
' SHT - Suboutine: Sht_read_serial_number
' Funktion gibt einen Fehlertext auf dem Display aus und hält die Ausfrührung
' des Programm an.
Sub Sht error handling(byval Error string As String )
 ' ----- Locale Variablen -----
 ' ----- Programmcode -----
 Cls
                                    ' Bildschirm löschen
 ' Fehlertext ausgeben
 .
             1234567890123456
 Locate 1 , 1 : Lcd "I2C Comm Failure"
 Locate 2 , 1 : Lcd Error string
 ' Terminate program execution.
 End
End Sub
'-- End Sht read serial number -----
' GOSubroutinen
         ******
' * SHT85: Sensirion *
· ****
·_____
                          -----
' SHT - Gosub-Routine: Sht read serial number
' Funktion liest die Seriennummer des Sensor aus und schreibt diese in eine
' globale Variable.
             _____
Sht read serial number:
 ' ----- Programmcode -----
```

```
' ggf. Traceausgaben auf RS232 erzeugen
  #if Sht_testmodus
     Print "++Enter Sht read serial number"
  #endif
  ' Error flag zurücksetzen
  Sht error flag = False
                                                         ' START-Sequenz senden
  I2cstart
  If Err = 1 Then Sht error flag = True
  12cwbyte Sht address write
                                                          ' Daten schreiben initiieren
  If Err = 1 Then Sht error_flag = True
  I2cwbyte Sht_cmd_read_serial_msb
                                                         ' MSB schreiben
  If Err = 1 Then Sht error flag = True
  I2cwbyte Sht_cmd_read_serial_lsb
                                                         ' LSB schreiben
  If Err = 1 Then Sht_error_flag = True
                                                           ' STOP-Bedingung wird nicht zwingend
  ' T2cstop
gefordert
  Waitms Sht t idle
  ' Hinweis: Auf die Auswertung der CRC wird verzichtet.
            Keine Sicherheitskritische Umsetzung
                                                         ' START-Sequenz erneut senden
  I2cstart
  If Err = 1 Then Sht error flag = True
                                                         ' Daten lesen initiieren
  I2cwbyte Sht_address_read
  If Err = 1 Then Sht error flag = True
  I2crbyte Sht_snb_3 , Ack
                                                         ' Byte 3 lesen
  If Err = 1 Then Sht_error_flag = True
  I2crbyte Sht snb 2 , Ack
                                                         ' Byte 2 lesen
  If Err = 1 Then Sht error flag = True
  I2crbyte Sht_crc_byte , Ack
                                                         ' Checksumme lesen
  If Err = 1 Then Sht error flag = True
  I2crbyte Sht_snb_1 , Ack
                                                          ' Byte 3 lesen
  If Err = 1 Then Sht error flag = True
                                                         ' Byte 2 lesen
  I2crbyte Sht snb 0 , Ack
  If Err = 1 Then Sht_error_flag = True
  I2crbyte Sht_crc_byte , Ack
                                                         ' Checksumme lesen
  If Err = 1 Then Sht error flag = True
                                                         ' STOP-Sequenz
  I2cstop
  ' Seriennummer verarbeiten und ggf. auf RS232 ausgeben
   ' ggf. Traceausgaben auf RS232 erzeugen
  #if Sht_testmodus
    Print "Serial Number : " ; Hex(sht serial number)
  #endif
   ' ggf. Traceausgaben auf RS232 erzeugen
  #if Sht testmodus
    Print "--Leaving Sht_read_serial_number"
     Print ""
   #endif
Return
'-- End Sht_read_serial number -----
                                              _____
' SHT - Gosub-Routine: Sht read status bytes
' Funktion liest die Statusregister des SHT85 aus und speichert diese in einer
' globalen Variable.
                        _____
```

Sht_read_status_bytes:

```
' ----- Programmcode -----
   ' ggf. Traceausgaben auf RS232 erzeugen
  #if Sht_testmodus
     Print "++Enter Sht read status bytes"
  #endif
  ' Error flag zurücksetzen
  Sht error flag = False
                                                          ' START-Sequenz senden
  I2cstart
  If Err = 1 Then Sht_error_flag = True
  12cwbyte Sht address write
                                                          ' Daten schreiben initiieren
  If Err = 1 Then Sht error flag = True
  I2cwbyte Sht_cmd_status_msb
                                                         ' MSB schreiben
  If Err = 1 Then Sht error flag = True
  I2cwbyte Sht_cmd_status_lsb
If Err = 1 Then Sht_error_flag = True
                                                          ' LSB schreiben
                                                            ' STOP-Bedingung wird nicht zwingend
   ' I2cstop
gefordert
  Waitms Sht t idle
   ' Hinweis: Auf die Auswertung der CRC wird verzichtet.
             Keine Sicherheitskritische Umsetzung
  I2cstart
                                                          ' START-Sequenz erneut senden
  If Err = 1 Then Sht error flag = True
                                                          ' Daten lesen initiieren
  I2cwbyte Sht_address_read
  If Err = 1 Then Sht_error_flag = True
  I2crbyte Sht status msb , Ack
                                                          ' Byte 3 lesen
  If Err = 1 Then Sht error flag = True
  I2crbyte Sht status lsb , Ack
                                                          ' Byte 2 lesen
  If Err = 1 Then Sht_error_flag = True
  I2crbyte Sht_crc_byte , Ack
                                                          ' Checksumme lesen
  If Err = 1 Then Sht error flag = True
                                                          ' STOP-Sequenz
  I2cstop
  ' Statusflags verarbeiten und ggf. auf RS232 ausgeben
   ' ggf. Traceausgaben auf RS232 erzeugen
  #if Sht_testmodus
     Print "Status Flags : " ; Bin(sht status flags)
  #endif
   ' ggf. Traceausgaben auf RS232 erzeugen
  #if Sht_testmodus
     Print "--Enter Sht read status bytes"
     Print ""
  #endif
Return
'-- End Sht_read_status_bytes ------
                         _____
·_____
' SHT - Gosub-Routine: Sht measurement
' Funktion startet einen single shot Messzyklus und wertet diesen aus. Die
' ermittelte Temperatur und die Luftfeuchtigkeit werden in globalen Variablen
' gespeichert.
Sht measurement:
  ' ----- Programmcode -----
```

```
' ggf. Traceausgaben auf RS232 erzeugen
   #if Sht_testmodus
     Print "++Enter Sht measurement"
   #endif
   ' Error flag zurücksetzen
  Sht error flag = False
  I2cstart
                                                             ' START-Sequenz senden
  If Err = 1 Then Sht error flag = True
  I2cwbyte Sht address write
                                                              ' Daten schreiben initiieren
  If Err = 1 Then Sht error_flag = True
  I2cwbyte Sht_cmd_single_rep_high msb
                                                             ' MSB schreiben
  If Err = 1 Then Sht error flag = True
  I2cwbyte Sht_cmd_single_rep_high_lsb
                                                              ' LSB schreiben
  If Err = 1 Then Sht_error_flag = True
   ' T2cstop
                                                               ' STOP-Bedingung wird nicht zwingend
gefordert
  Waitms Sht t meas
   ' Hinweis: Auf die Auswertung der CRC wird verzichtet.
             Keine Sicherheitskritische Umsetzung
                                                             ' START-Sequenz erneut senden
  I2cstart
  If Err = 1 Then Sht error flag = True
                                                             ' Daten lesen initiieren
  I2cwbyte Sht_address_read
  If Err = 1 Then Sht error flag = True
  I2crbyte Sht_temperature_msb , Ack
                                                              ' Temperature MSB lesen
  If Err = 1 Then Sht_error_flag = True
  I2crbyte Sht temperature lsb , Ack
                                                              ' Temperature LSB lesen
  If Err = 1 Then Sht error flag = True
  I2crbyte Sht_crc_byte , Ack
                                                             ' Checksumme lesen
  If Err = 1 Then Sht error flag = True
  I2crbyte Sht_humidity_msb , Ack
                                                              ' Humidity MSB lesen
  If Err = 1 Then Sht error flag = True
  I2crbyte Sht humidity lsb , Ack
                                                              ' Humidity LSB lesen
  If Err = 1 Then Sht_error_flag = True
  I2crbyte Sht_crc_byte , Ack
                                                             ' Checksumme lesen
  If Err = 1 Then Sht error flag = True
                                                              ' STOP-Sequenz
  I2cstop
   ' Statusflags verarbeiten und ggf. auf RS232 ausgeben
   ' ggf. Traceausgaben auf RS232 erzeugen
   #if Sht_testmodus
     Print "RAW Temperature : " ; Hex(sht_temperature_word) ; " = " ; Sht_temperature_word
     Print "RAW Humidity : " ; Hex (sht humidity word) ; " = " ; Sht humidity word
   #endif
   ' Achtung: hier Rechnen leider nur mit SINGLE möglich
   ' Temperatur berechnen
   Sht_temperature_float = Sht_temperature_word / 65535
  Sht_temperature_float = Sht_temperature_float * 175
Sht_temperature_float = Sht_temperature_float - 45
   ' Luftfeuchtigketi berechnen
   Sht_humidity_float = Sht_humidity_word / 65535
  Sht humidity float = Sht humidity float * 100
   ' ggf. Traceausgaben auf RS232 erzeugen
   #if Sht testmodus
```

```
Print "Temperature : " ; Fusing(sht_temperature_float , "##.#" )
Print "Humidity : " ; Fusing(sht_humidity_float , "##.#" )
 #endif
 ' ggf. Traceausgaben auf RS232 erzeugen
 #if Sht testmodus
   Print "--Enter Sht_measurement"
   Print ""
 #endif
Return
'-- End Sht measurement -----
·_____
' Devices schließend und ggf. "Terminate Programm execution"
·_____
                                   _____
' System halt
End
                                   'end program
1_____
                 _____
' Definition von globalen Konstantenfeldern
                          _____
ï
16.02.2020 : Version 1.0
        Erste offizielle und vollständig umgesetzte Produktivsoftware
        Review der Software und Erstinbetriebnahme auf Hardware
        Dauertest über ca. 5 Stunden
   _____
    _____
****
```

Software 2: Source-Code des Projekt HygroTherm

14 Interessantes und wichtige Links

14.1 <u>Bücher und Literatur</u>

- myAVR Lehrbuch Mikrocontroller-Programmierung
 Laser & Co. Solutions GmbH
- LCD Lehrheft
 Laser & Co. Solutions GmbH
- Projekt "myTWI" Laser & Co. Solutions GmbH
- Mikrocomputertechnik mit Controllern der Atmel AVR-RISC-Familie
 G. Schmitt, Oldenburgverlag, ISBN 3-486-58016-7
- Leiterplattendesign mit EAGLE
 André Ketler, Marc Neujahr, mit Verlag, ISBN 978-3-8266-1340-1
- Messen, Steuern und Regeln mit AVR_Controllern Wolfgang Trampert, Franzis Verlag, ISBN 3-7723-4298-1
- Programmierung der AVR RISC Mikrocontroller mit BASCOM-AVR Claus Kühnel, Books on Demand, ISBN 3907857046

14.2 Internet

14.2.1 Firmen und Foren

<u>SW</u>

MCS Electronics

URL: http://www.mcselec.com/ - BASCOM-AVR BASIC Compiler und Forum

<u>HW</u>

<u>Bauelemente:</u>

Mouser Electronics

URL: https://www.mouser.de/

- Bauelemente und Zubehör (riesen Auswahl, weltweit)

Conrad Electronic

- URL: http://www.conrad.de
- Bauelemente und Zubehör (zum Teil aber sehr teuer)

Pollin Electronic

URL: http://www.pollin.de/shop/shop.php

- Bauelemente
- ATmega Evaluationsboard

Reichelt Elektronik

URL: http://www.reichelt.de/

- Günstige Bauelemente
- STK500 von ATMEL

Farnell Deutschland

URL: http://de.farnell.com/jsp/home/homepage.jsp - Bauelemente

ELV

- URL: http://shop.elv.de/output/controller.aspx
- Günstige Bauelemente
- LCD-Displays

RS Components GmbH

- URL: http://www.rsonline.de
- Große Auswahl an Bauelementen zu guten Preisen

Hersteller und Spezialitäten:

ATMEL Corporation

- URL: http://www.atmel.com/ - ATmega
- STK500

Sensirion

URL: http://www.sensirion.com/ - Halbleiterhersteller für Temperatursensoren und Feuchtigkeitssensoren

TAOS

URL: http://www.taosinc.com - Halbleiterhersteller für Lichtsensoren

Riesen + Kern GmbH

URL: http://www.driesen-kern.de - Deutscher Distributor für Sensirion Halbleiter

rb-Messtechnik Reinhardt

URL: http://www.rb-messtechnik.de - Windgeber

DatasheetCatalog.COM

URL: http://www.datasheetcatalog.com - Datenblätter zu fast allen bekannten elektr. Bauelementen

Worls Of Electronic – Elektronikprojekte

URL: http://www.woe.onlinehome.de/projekte.htm - AVR JTAG Emulator

Plantinenservice und Hersteller:

GS Electronic

Sven Schult Spillbähnstraße 19a 53844 Troisdorf

Tel. 02241-3010465 Fax 02241-3010469 eMail gselectronic@gsel.de URL: <u>http://www.gsel.com/</u> - Plantinenservice

- Einzelstücke
- Kleinserien

Leiton GmbH

Gottlieb-Dunkel-Str. 47-48 12099 Berlin

Tel.: +49-(0)30-701 73 49-0 Fax: +49-(0)30-701 73 49-19

E-Mail: kontakt@leiton.de URL: http://www.leiton.de

- Platinenservice
- Einzelstücke
- Kleinserien
- Sehr günstige Preise
- Leiton stellt Download für Eagle DesignRules zur Verfügung

AISLER

AISLER Germany Dispatch

Dennewartstr. 25-27 52068 Aachen Germany VAT No.: DE317911524

URL: https://aisler.net/

Email:	mailto::hello@aisler.net
Twitter:	https://twitter.com/AislerHQ

plexislaser

M.Schön eDesign GmbH Geschäftsführer: Michael Schön Im Lipperfeld 3F 46047 Oberhausen

Telefon: 0208 8215975 Telefax: 0208 8215976 E-Mail: mailto:info@plexilaser.de

Whatsapp: +49 208 8215975

14.2.2 ATmega SW und HW-Lösungen

Laser & Co. Solutions GmbH

- URL: http://www.myavr.de
- Bausätze zum ATmega8
- SW-Lösungen zum Selbststudium
- Dokumente

14.2.3 Foren

RoboterNetz.de

URL: http://www.roboternetz.de - Großer Portal für Robotik, Elektronik und Mikrocontroller

MCS Electronics

URL: http://www.mcselec.com/ - Forum rund um BASCOM-AVR

AVR feaks

URL: http://www.avrfreaks.net/ - Forum AVRFREAKS.NET

Pony-Prog Tutorial

URL: http://www.mikrocontroller.net/articles/Pony-Prog_Tutorial - Pony-Prog Tutorial

QSLnet

URL:http://www.qsl.netURL:http://www.qsl.net/pa3ckr/index.htmlURL:http://www.qsl.net/pa3ckr/bascom%20and%20avr/arrays%20and%20data/index.html

- Forum für Elektronik und SW-Lösungen (entstanden aus Radio Amateur Community)

- Zusammenfassung BASCOM und AVR Lösungen (Arrays usw.)

AVR_Praxis

URL: http://www.avr-praxis.de/index.php

AVR-PRAXIS ist ein Forum, das ausschließlich für einen Gedankenaustausch und als Diskussionsplattform für Interessierte bereitstelle, welche sich privat, durch das Studium oder beruflich mit der AVR-Mikrocontrollerfamilie beschäftigen wollen oder müssen.

Microcontroller.net

URL: http://www.mikrocontroller.net Großes Portal mit Forum und Chat

BASCOM-Forum

URL: http://www.bascom-forum.de Forum für Projekte, Hardware und Diskussionen

Infos rund um den ATmega:

URL:http://www.dieelektronikerseite.de/uC%20Ecke/Module/Ports%20-
%20Wenn%20der%20AVR%20steuert.htmURL:http://www.kreatives-chaos.com/artikel/avr-grundschaltungen

Informationen zum TWI / I²C-Bus:

- URL: http://www.roboternetz.de/wissen/index.php/I2C
- URL: http://www.roboternetz.de/wissen/index.php/TWI
- URL: http://www.roboternetz.de/wissen/index.php/TWI_Praxis
- URL: http://www.roboternetz.de/wissen/index.php/TWI_Praxis_Multimaster
- URL: http://www.roboternetz.de/wissen/index.php/Bascom_I2C_Master
- URL: http://www.roboternetz.de/wissen/index.php/Bascom_und_USI-Kommunikation
- URL: http://www.roboternetz.de/wissen/index.php/Bascom_Soft-I2c_Library
- URL: http://www.roboternetz.de/wissen/index.php/Bascom_Inside-Code

15 Entwicklungsbegleitende Notizen und Informationen

15.1 Projektcheckliste für AVR Systemdesigns

Diese Checkliste beinhaltet einige grundlegende Regeln beim Design mit AVR Mikrokontrollern.

http://www.mikrocontroller.net/articles/AVR_Checkliste

Dies sind zusammengefasst in Kürze:

15.1.1 Abblockkondensator(en) ordnungsgemäß installiert?

Abblockkondensatoren ("Bunker-Kondensatoren") dienen dazu, sehr kurze Versorgungsspannungseinbrüche, die durch Schaltvorgänge verursacht werden können, zu kompensieren. Diesen Zweck erfüllen sie optimal, wenn folgende Regeln eingehalten werden:

- Ein Abblockkondensator sollte möglichst dicht am IC sitzen.
- Jedes IC in einer Schaltung sollte einen Abblockkondensator besitzen.
- Bei ICs mit mehreren Anschlüssen für VCC und GND sollte jedes VCC-GND-Paar mit einem eigenen Abblockkondensator beschaltet werden (z. B. AVRs in SMD-Bauform wie dem ATmega16A also mit vier Kondensatoren).
- Es sollten keramische Kondensatoren mit einer Kapazität von 100 nF verwendet werden. Größere Kondensatoren, etwa 10 µF-Elkos, sind für diese Aufgabe *nicht* geeignet, weil sie "zu langsam" sind!

15.1.2 Spannungsversorgung richtig angeschlossen?

Der AVCC-Pin ist der Versorgungsanschluss für den AD-Wandler und den zugehörigen Port. Er ist nicht an allen AVRs vorhanden; wenn er aber vorhanden ist, so muss er auf jeden Fall angeschlossen sein, auch wenn der AD-Wandler nicht benutzt wird. Wird der AD-Wandler verwendet, sollte zur Verbesserung der Genauigkeit der AVCC-Pin über einen Lowpass-Filter angeschlossen werden (siehe Datenblatt). Oft funktioniert die Programmierung des Controllers auch, wenn Vcc oder GND nicht richtig angeschlossen ist. Zur Sicherheit kann man mit einem Messgerät direkt an den Anschlüssen des AVRs kontrollieren (VCC-GND, AVCC-GND) prüfen, ob die Verbindungen korrekt sind. Es empfiehlt sich, vor dem Einsetzen bzw. Einlöten des Controllers die Versorgungsanschlüsse nochmals zu prüfen, um sicherzustellen, dass man den IC nicht durch eine zu hohe Spannung aufgrund eines Fehlers in der Versorgung zerstört.

15.1.3 Reset-Pin korrekt beschaltet?

Der Reset-Anschluss am AVR ist 'active-low', d. h. wenn man den Pin mit GND (Masse) verbindet, wird der Controller resettet. Zwar haben AVRs einen internen Pullup-Widerstand, der den Reset-Pin gegen VCC "zieht", dieser ist jedoch relativ hochohmig (ca. 50 kOhm, vgl. Datenblatt) und reicht unter Umständen nicht aus, um den Reset-Pin sicher "hochzuhalten". Als Mindestbeschaltung empfiehlt sich dringend, einen externen Pullup-Widerstand vorzusehen (typisch 10 kOhm), der den Reset-Pin mit VCC verbindet. Er sollte nicht kleiner als 4,7 kOhm sein, da der Programmieradapter sonst eventuell den Reset-Pin während des Programmiervorgangs nicht sicher auf "low" ziehen kann. Zusätzlich sollte man auch noch einen Kondensator 47 nF oder 100 nF zwischen Reset-Pin und GND anordnen. Dieses RC-Glied sorgt dafür, dass der Controller beim Einschalten der Versorgungsspannung für eine definierte Zeitspanne im Reset gehalten wird. Im laufenden Betrieb sorgt der Kondensator dafür, dass der Reseteingang unempfindlich gegenüber Spikes und Glitches wird. Er sollte deshalb unmittelbar in Pin-Nähe beim Prozessor untergebracht werden. Dieser Kondensator darf jedoch nicht verwendet werden, wenn DebugWire möglich sein soll. Atmel empfiehlt zusätzlich noch zum Schutz vor Überspannungen eine externe Diode nach VCC ("Clamp-Diode"), da für den Reset-Pin keine interne vorhanden ist. Diese Diode bereitet jedoch bei manchen Programmieradaptern Schwierigkeiten.

15.1.4 Alle Ground-Anschlüsse beschaltet?

Bei AVRs mit mehreren Ground-Anschlüssen müssen alle Anschlüsse beschaltet werden. Siehe

http://www.mikrocontroller.net/forum/read-1-107259.html

16 Datenblätter

16.1 FTDI Serial TTL-232 USB Cable

16.2 Mini USB Typ B liegend 5-polig WR-COM Buchse, Einbau horizontal WR-COM Würth Elektronik

16.3 Miniatur-Lüfter

SUNON

SPECIFICATION FOR APPROVAL

:

:

:

CUSTOMER

MOTOR TYPE

DESCRIPTION

DIMENSIONS

MODEL

SUNON SPEC. NO.

: D02026590G-01

: 25X25X10mm

: MagLev Motor Fan

: MF25100V2-1000U-A99

CUSTOMER **APPROVAL NO.** APPROVED BY CUSTOMER (AUTHORIZED)

SPEC.NO D02026590G-01 ISSUE DATE 07.18.2017 Kelly Nancy DRAWN CHECKED APPROVED EDITION 0 Smart 07/18 Cindy REVISION DATE E.SPEC E11600413 建準電機工業股份有限公司 SUNONWEALTH ELECTRIC MACHINE INDUSTRY CO., LTD.

NO. 30, LN. 296, XINYA RD., QIANZHEN DIST., TEL:886-7-8135888 KAOHSIUNG CITY 80673, TAIWAN (R.O.C) URL:http://www.SUNON.com

FAX:886-7-8230505/8230606/8231010

E-mail: SUNON@email.SUNON.com.tw

建 塗 懢 機 SUNONWEALTH Page 1 of 14

業便

I. MODEL NUMBERING SYSTEM

建準電機 SUNONWEALTH Page 2 of 14

II. SPECIFICATION

1. MECHANICAL CHARACTERISTIC

MOTOR DESIGN	Single phase, 4-poles Brushless DC motor
BEARING SYSTEM	Precise Vapo bearing system
DIMENSIONS	See Page 6
MATERIALS OF FRAME	Thermoplastic PBT of UL 94V-0
MATERIALS OF FAN BLADE	Thermoplastic PBT of UL 94V-0
DIRECTION OF ROTATION	Counter-clockwise viewed from front of fan blade
MOUNTING HOLES	Diameter 2.8 mm in 3 holes
WEIGHT	6.9 g

2. ELECTRIC CHARACTERISTIC

RATED VOLTAGE	5 VDC
RATED CURRENT	65 mA / Max. 75 mA
RATED POWER CONSUMPTION	0.33 WATTS / Max. 0.38 WATTS
SAFETY POWER CONSUMPTION	0.38 WATTS
OPERATING VOLTAGE RANGE	2.5~6.0 VDC
STARTING VOLTAGE	2.5 VDC (25 deg. C POWER ON/OFF)
OPERATING TEMPERATURE RANGE	-10 to + 70 deg. C
STORAGE TEMPERATURE RANGE	-40 to + 70 deg. C

建準電機 SUNONWEALTH Page 3 of 14

RATED SPEED	9800 RPM ± 20% at rated voltage
AIR FLOW	3.0 CFM
STATIC PRESSURE	0.18 Inch-H2O
ACOUSTIC NOISE	16.0 dB(A)
AIR FLOW V.S. PRESSURE	See Page 5
INSULATION CLASS	UL Class A
INSULATION RESISTANCE PLASTIC HOUSING	10M ohm at 500 VDC between internal stator and Lead wire (+)
DIELECTRIC STRENGTH	Applied AC 500 V for one minute or AC 600 V for 2 Seconds between housing and lead wire (+)
LIFE EXPECTANCY	70,000 Hours at 40 deg. C, 65% humidity, 90% CL.
PROTECTION	 Automatic Restart Note: In a situation where the fan is locked by an external force while the electricity is on, an increase in coil temperature will be prevented by temporarily turning off the electrical power to the motor. The fan will automatically restart when the locked rotor condition is released. Polarity Protection

3. PERFORMANCE CHARACTERISTIC

4. SAFETY

SAFETY	UL	CUR	TUV	CE
NO.	E77551	E77551	✓	✓

建準電機 SUNONWEALTH Page 5 of 14

建準電機 SUNONWEALTH Page 6 of 14

(b)- (a) (d)		(c) (h) Printin Produ (j) Manufac	BLAC COLO BLAC COLO g Plan uction	CK WORD DR:WHITE ACK WORD DLOR:PANTO CK WORD DR:WHITE It Code serial number lant: CHINA TAIWAN	NE 347C
(a)Dimension	(b)Model Name	(c)V	/oltage	(d)Power Consumption	(h)Protection
13.5	MF25100V2-100	0U-A99	5	0.38	EP
	())Safet TUV/UL+	y CUR			
English font type: Swis Safety(TUV/UL+CU	721 Series & Switzerland Narrow, Chin R)	ese font type:	超研澤	中明簡體.	

建準電機 SUNONWEALTH Page 7 of 14

III. OTHER SPECIFIED TESTING

The following is a general description of certain tests that are performed on representative SUNON fans. Nothing in this document is intended to suggest that these tests are performed on every model of SUNON fan. Moreover, the descriptions that follow each test are meant only to provide a general explanation of each test. If you would like a more detailed explanation as to any test identified in this Section, SUNON can provide such an explanation upon request.

1. DROP PROOF TEST

Fans are packaged in a standard size shipping box and are dropped to the ground from certain heights and angles depending on the weight of the particular box.

2. HUMIDITY PROOF TEST

The fan is operated for 96 continuous hours in an environment with humidity of 90% to 95% RH at $60^{\circ}C \pm 2^{\circ}C$.

3. VIBRATION PROOF TEST

Vibration with an amplitude 2mm and a frequency of 5-55-5hz is applied in all 3 directions (X,Y,Z), in cycles of 1 hour each, for a total vibration time of 3hours.

4. THERMAL CYCLING TEST

The fan is operated in a testing chamber for 50 cycles. In each cycle, the temperature is gradually increased from -10°C to 70°C for 90 minutes, and subsequently operated at 70°C for 120 minutes. The temperature is then gradually decreased from 70°C to -10°C for 90 minutes, and subsequently operated at -10°C for 120 minutes.

5. SHOCK PROOF TEST

100G of force is applied in the 3 directions (X,Y, and Z) for 2 milliseconds each.

6. LIFE EXPECTANCY

The "Life Expectancy" of SUNON fans is determined in SUNON's reliability test laboratory by using temperature chambers. The "Life Expectancy" of this fan has not been evaluated for use in combination with any end application. Therefore, the Life Expectancy Test Reports (L10 and MTTF Report) that relate to this fan are only for reference.

> 建準電機 SUNONWEALTH Page 8 of 14

IV. CHARACTERISTIC DEFINITION

The following is a general description of certain tests that are performed on representative SUNON fans in order to determine the specifications of the fan. Nothing in this document is intended to suggest that these tests are performed on every model of SUNON fan. Moreover, the descriptions that follow each test are meant only to provide a general explanation of each test. If you would like a more detailed explanation as to any test identified in this Section, SUNON can provide such an explanation upon request.

1. ACOUSTICAL NOISE

Measured in a semi-anechoic chamber with background noise level below 15dB(A).

1 METER FROM MICROPHONE TO FAN INTAKE

The fan is running in free air under shaft horizontal condition with the microphone at distance of one meter from the fan intake.

2. INPUT POWER

Measured after continuous 10 minute operation at rated voltage in clean air (STATIC PRESSURE=0), and at ambient temperature of 25 degrees C under shaft horizontal condition.

3. RATED CURRENT

Measured after continuous 10 minute operation at rated voltage in clean air (STATIC PRESSURE=0), and at ambient temperature of 25 degrees C under shaft horizontal condition.

建準電機 SUNONWEALTH Page 9 of 14

4. RATED SPEED

Measured after continuous 10 minute operation at rated voltage in clean air (STATIC PRESSURE=0), and at ambient temperature of 25 degrees C under shaft horizontal condition.

5. STARTING VOLTAGE

Measured the voltage which enables to start the fan in the clean air (static pressure = 0) by switching on at the voltage under shaft horizontal condition. It is not at continuously increasing voltage adjustment.

6. LOCKED ROTOR CURRENT

Measured immediately after the fan blade is locked.

7. AIR FLOW AND STATIC PRESSURE

The performance specification of air flow and static pressure shown in this specification for approval is measured using the exhaust method. A double chamber is used in accordance with AMCA 210 standard or DIN 24163 specification. The values are recorded when the fan speed has stabilized at rated voltage.

8. INSULATION RESISTANCE

1. PLASTIC HOUSING:

(1) Measured between internal stator and lead wire(+).

(2) Measured between housing and lead wire(+).

2. ALUMINIUM HOUSING:

Measured between internal stator and lead wire(+).

9. DIELECTRIC STRENGTH

Measure between housing and lead wire(+).

16.4 Temperatur und Luftfeuchtigkeitssensor Sensirion SHT85

Datasheet SHT85

Humidity and Temperature Sensor

- High-accuracy RH&T sensor for demanding measurement & test applications
- Typical accuracy of \pm 1.5 %RH and \pm 0.1 °C
- Pin-type packaging for easy integration and replacement
- Fully calibrated, linearized, and temperature compensated digital output

Product Summary

SHT85 is Sensirion's best-in-class humidity sensor with pin-type connector for easy integration and replacement. It builds on a highly accurate and long-term stable SHT3x sensor that is at the heart of Sensirion's new humidity and temperature platform. The unique package design allows for the best possible thermal coupling to the environment and decoupling from potential heat sources on the main board. The SHT85 features a PTFE membrane dedicated to protect the sensor opening from liquids and dust according to IP67, without affecting the response time of the RH signal. It thus allows for sensor use under harsh environmental conditions, (such as spray water and high exposure to dust). Final accuracy testing on product level ensures best performance, making the SHT85 the ultimate choice for even the most demanding applications.

Benefits of Sensirion's CMOSens® Technology

- High reliability and long-term stability
- · Industry-proven technology with a track record of more than 10 years
- Designed for mass production
- · Optimized for lowest cost
- Low signal noise

Content

1 Humidity and Temperature Sensor Specifications	3
2 Electrical Specifications	6
3 Pin Assignment	8
4 Operation and Communication	9
5 Packaging	18
6 Shipping Package	20
7 Quality	21
8 Ordering Information	21
9 Further Information	21
10 Important Notices	22
11 Revision History	23
12 Headquarters and Subsidiaries	23

www.sensirion.com / D1

Version 1.0 - November 2018

1 Humidity and Temperature Sensor Specifications

Relative Humidity

Parameter	Conditions	Value	Units
Accuracy tolerance ¹	Тур.	±1.5	%RH
	Max.	see Figure 1	-
	Low, typ.	0.21	%RH
Repeatability ²	Medium, typ.	0.15	%RH
	High, typ.	0.08	%RH
Resolution	Тур.	0.01	%RH
Hysteresis	At 25°C	±0.8	%RH
Specified range ³	Non-condensing environment4	0 to 100	%RH
Response time ⁵	τ 63%	86	S
Long-term drift ⁷	Тур.	<0.25	%RH/y

Table 1: Humidity sensor specifications

Temperature

Parameter	Conditions	Value	Units
Accuracy tolerance ¹	Typ., 20°C to 50 °C	±0.1	°C
	Max.	see Figure 2	-
	Low, typ.	0.15	°C
Repeatability ²	Medium, typ.	0.08	°C
	High, typ.	0.04	°C
Resolution	Тур.	0.01	°C
Operating range	-	-40 to 105 ⁸	°C
Response time ⁹	τ 63%	>2	S
Long-term drift	Тур.	< 0.03	°C/y

Table 2: Temperature sensor specifications

¹ For definition of typ. and max. accuracy tolerance, please refer to the document "Sensirion Humidity Sensor Specification Statement".

² The stated repeatability is 3 times the standard deviation (3σ) of multiple consecutive measurement values at constant conditions and is a measure for the noise on the physical sensor output.

³ Specified range refers to the range for which the humidity sensor specification is guaranteed.

⁴ Condensation shall be avoided because of risk of corrosion and leak currents on the PCB. For details about recommended humidity and temperature operating range, please refer to Section 1.2.

⁵ Time for achieving 63% of a humidity step function, valid at 25°C and 1 m/s airflow. Humidity response time in the application depends on the design-in of the sensor.

⁶ With activated ART function (see Section 4.8) the response time can be improved by a factor of 2.

⁷ Typical value for operation in normal RH/T operating range. Max. value is < 0.5 %RH/y. Value may be higher in environments with vaporized solvents, out-gassing tapes, adhesives, packaging materials, etc. For more details please refer to Handling Instructions.

⁸ All parts, incl. PCB are rated up to 125°C, except for the connector, which is rated for 105°C.

⁹ Temperature response time depends on heat conductivity of sensor substrate and design-in of sensor in application.

Version 1.0 - November 2018

3/23

Figure 1: Typical and maximal tolerance for relative humidity in %RH at 25 °C.

Figure 2: Typical and maximal tolerance for temperature sensor in °C

1.1 RH Accuracy at Various Temperatures

Typical RH accuracy at 25°C is defined in Figure 2. For other temperatures, typical accuracy has been evaluated to be as displayed in Figure 4.

Figure 3: Typical accuracy of relative humidity measurements given in %RH for temperatures 0 - 80°C.

1.2 Recommended Operating Conditions

The sensor shows best performance when operated within recommended normal temperature and humidity range of 5-60 °C and 20-80 %RH, respectively. Long term exposure to conditions outside normal range, especially at high humidity, may temporarily offset the RH signal (e.g. +3%RH after 60h at >80%RH). After returning into the normal temperature and humidity range, the sensor will slowly come back to calibration state by itself. Prolonged exposure to extreme conditions may accelerate ageing.

To ensure stable operation of the humidity sensor, the conditions described in the document "SHTxx Assembly of SMD Packages", Section "Storage and Handling Instructions" regarding exposure to volatile organic compounds have to be met. Please note as well that this does apply not only to transportation and manufacturing, but also to operation of the SHT85.

www.sensirion.com / D1

2 Electrical Specifications

2.1 Electrical Characteristics

Parameter	Symbol	Conditions	Min	Тур.	Max	Units	Comments
Supply voltage	VDD		2.15	3.3	5.5	٧	-
Power-up/down level	VPOR		1.8	2.1	2.15	٧	-
Slew rate change of the supply voltage	VDD,slew		-	-	20	V/ms	Voltage changes on the VDD line between $V_{DD,min}$ and $V_{DD,max}$ should be slower than the maximum slew rate; faster slew rates may lead to reset;
Supply current	loo	ldle state (single shot mode) T= 25°C	-	0.2	12.0		Current when sensor is not
		Idle state (single shot mode) T= 125°C	-	-	6.0	μA	during single shot mode
		Idle state (periodic data acquisition mode)	-	45	-	μA	Current when sensor is not performing a measurement during periodic data acquisition mode
		Measurement	-	600	1500	μA	Current consumption while sensor is measuring
		Average	-	1.7	-	μA	Average current consumption (operation with one measurement per second at lowest repeatability, single shot mode)
Heater Power	P _{Heater}	Heater running	3.6	-	33	mW	Depending on the supply voltage

Table 3: Electrical specifications, typical values are valid for T=25°C, min. & max. values for T=-40°C ... 125°C.

2.2 Timing Specifications

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units	Comments
Power-up time	teu	After hard reset, V _{DD} ≥ V _{POR}	-	0.5	1.5	ms	Time between V _{DD} reaching V _{PU} and sensor entering idle state
Soft reset time	tsr	After soft reset.	-	0.5	1.5	ms	Time between ACK of soft reset command and sensor entering idle state
	t _{MEAS,I}	Low repeatability	-	2.5	4.5	ms	The three repeatability modes differ
Measurement duration	tMEAS,m	Medium repeatability	-	4.5	6.5	ms	with respect to measurement
	t _{MEAS,h}	High repeatability	-	12.5	15.5	ms	consumption.

Table 4: System timing specifications, valid from -40 °C to 125 °C and VDDmin to VDDmax.

2.3 Absolute Minimum and Maximum Ratings

Stress levels beyond those listed in Table 5 may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions cannot be guaranteed. Exposure to the absolute maximum rating conditions for extended periods may affect the reliability of the device. Ratings are only tested each at a time.

Parameter	Rating
Supply voltage, Voo	-0.3 to 6 V
Max voltage on pins (pin 1 (SCL); pin 4 (SDA);	-0.3 to VDD+0. V
Input current on any pin	±100 mA
Operating temperature range	-40 to 105 °C
Storage temperature range ¹⁰	-40 to 105 °C
ESD HBM (human body model) ¹¹	4 kV
ESD CDM (charge device model) ¹²	750 V

Table 5: Absolute maximum ratings.

10 The recommended storage temperature range is 10-50°C. Please consult the document "SHTxx Handling Instructions" for more information.

11 According to ANSI/ESDA/JEDEC JS-001-2014; AEC-Q100-002.

12 According to ANSI/ESD \$5.3.1-2009; AEC-Q100-011.

```
www.sensirion.com / D1
```

Version 1.0 - November 2018

7/23

3 Pin Assignment

The SHT85 comes with a 4-pin-type connector, see Table 6.

Pin	Name	Comments
1	SCL	Serial clock; input only
2	VDD	Supply voltage; input
3	VSS	Ground
4	SDA	Serial data; input / output

Table 6: SHT85 pin assignment (transparent top view). The die pad is internally connected to VSS.

3.1 Power Pins (VDD, VSS)

The electrical specifications of the SHT85 are shown in Table 3. Decoupling of VDD and VSS by a 100nF capacitor is integrated on the front side of the sensor packaging. See Figure 4 for a typical application circuit.

Figure 4: Typical application circuit

3.2 Serial Clock and Serial Data (SCL, SDA)

SCL is used to synchronize the communication between microcontroller and the sensor. The clock frequency can be freely chosen between 0 to 1000 kHz.

The SDA pin is used to transfer data to and from the sensor. Communication with frequencies up to 400 kHz must meet the I2C *Fast Mode*¹³ standard. Communication frequencies up to 1 Mhz are supported following the specifications given in Table 20.

13 http://www.nxp.com/documents/user_manual/UM10204.pdf

```
www.sensirion.com / D1
```

Version 1.0 - November 2018

8/23

4 Operation and Communication

The SHT85 supports I2C fast mode (and frequencies up to 1000 kHz). For detailed information on the I2C protocol, refer to NXP I2C-bus specification¹⁴.

After sending a command to the sensor a minimal waiting time of 1ms is needed before another command can be received by the sensor.

Furthermore, to keep self-heating below 0.1°C, SHT85 should not be active for more than 10% of the time.

All SHT85 commands and data are mapped to a 16-bit address space. Additionally, data and commands are protected with a CRC checksum. This increases communication reliability. The 16 bits commands to the sensor already include a 3 bit CRC checksum. Data sent from and received by the sensor is always succeeded by an 8 bit CRC.

In write direction it is mandatory to transmit the checksum, since the SHT85 only accepts data if it is followed by the correct checksum. In read direction it is left to the master to read and process the checksum.

4.1 I2C Address

The I2C device address is given in Table 7: SHTC85 I²C device address.

SHT85	Hex. Code	Bin. Code
I ² C address	0x44	100'0100

Table 7: SHTC85 I²C device address.

4.2 Power-Up and Communication Start

The sensor starts powering-up after reaching the power-up threshold voltage V_{POR} specified in Table 3. After reaching this threshold voltage the sensor needs the time t_{PU} to enter idle state. Once the idle state is entered it is ready to receive commands from the master (microcontroller).

Each transmission sequence begins with a START condition (S) and ends with a STOP condition (P) as described in the I2C-bus specification. Whenever the sensor is powered up, but not performing a measurement or communicating, it automatically enters idle state for energy saving. This idle state cannot be controlled by the user.

4.3 Starting a Measurement

A measurement communication sequence consists of a START condition, the I2C write header (7-bit I2C device address plus 0 as the write bit) and a 16-bit measurement command. The proper reception of each byte is indicated by the sensor. It pulls the SDA pin low (ACK bit) after the falling edge of the 8th SCL clock to indicate the reception. A complete measurement cycle is depicted in Table 8.

With the acknowledgement of the measurement command, the SHT85 starts measuring humidity and temperature.

4.4 Measurement Commands for Single Shot Data Acquisition Mode

In this mode one issued measurement command triggers the acquisition of one data pair. Each data pair consists of one 16-bit temperature and one 16-bit humidity value (in this order). During transmission each data value is always followed by a CRC checksum, see Section 4.5.

In single shot mode different measurement commands can be selected. The 16-bit commands are shown in Table 8. They differ with respect to repeatability (low, medium and high).

14 http://www.nxp.com/documents/user_manual/UM10204.pdf

www.sensirion.com / D1

The repeatability setting influences the measurement duration and thus the overall energy consumption of the sensor. This is explained in Section 2.

Table 8: Measurement commands in single shot mode. The first "SCL free" block indicates a minimal waiting time of 1ms. (Clear blocks are controlled by the microcontroller, grey blocks by the sensor).

4.5 Readout of Measurement Results for Single Shot Mode

After the sensor has completed the measurement, the master can read the measurement results (pair of RH & T) by sending a START condition followed by an I2C read header.

The sensor responds to a read header with a not acknowledge (NACK), if the measurement is still ongoing and thus no data is present.

If the measurement is completed, the sensor will acknowledge the reception of the read header and send two bytes of data (temperature) followed by one byte CRC checksum and another two bytes of data (relative humidity) followed by one byte CRC checksum. Each byte must be acknowledged by the microcontroller with an ACK condition for the sensor to continue sending data. If the sensor does not receive an ACK from the master after any byte of data, it will not continue sending data.

The sensor will send the temperature value first and then the relative humidity value. After having received the checksum for the humidity value a NACK and stop condition should be sent (see Table 8).

The I2C master can abort the read transfer with a NACK condition after any data byte if it is not interested in subsequent data, e.g. the CRC byte or the second measurement result, in order to save time.

In case the user needs humidity and temperature data but does not want to process CRC data, it is recommended to read the two temperature bytes of data with the CRC byte (without processing the CRC data); after having read the two humidity bytes, the read transfer can be aborted with a with a NACK.

Į.

4.6 Measurement Commands for Periodic Data Acquisition Mode

In this mode one issued measurement command yields a stream of data pairs. Each data pair consists of one 16-bit temperature and one 16-bit humidity value (in this order).

In periodic mode different measurement commands can be selected. The corresponding 16-bit commands are shown in Table 9. They differ with respect to repeatability (low, medium and high) and data acquisition frequency (0.5, 1, 2, 4 & 10 measurements per second, mps).

The data acquisition frequency and the repeatability setting influences the measurement duration and the current consumption of the sensor. This is explained in Section 2 of this datasheet.

If a measurement command is issued, while the sensor is busy with a measurement (measurement durations see Table 4), it is recommended to issue a break command first (see Section 4.9). Upon reception of the break command the sensor will abort the ongoing measurement and enter the single shot mode.

Condition		Hex. code	
Repeatability	mps	MSB	LSB
High			32
Medium	0.5	0x20	24
Low			2F
High			30
Medium	1	0x21	26
Low			2D
High			36
Medium	2	0x22	20
Low			2B
High			34
Medium	4	0x23	22
Low			29
High			37
Medium	10	0x27	21
Low			2A
e.g. 0x2130: 1 high repeatability mps - measurement per second			
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 S I2C Address WQ Command MSB Q Command LSB Q I2C write header 16-bit command LSB Q			

Table 9: Measurement commands for periodic data acquisition mode (Clear blocks are controlled by the microcontroller, grey blocks by the sensor). N.B.: At the highest mps setting self-heating of the sensor might occur.

4.7 Readout of Measurement Results for Periodic Mode

Transmission of the measurement data can be initiated through the fetch data command shown in Table 10. If no measurement data is present the I2C read header is responded with a NACK (Bit 9 in Table 10) and the communication stops. After the read out command fetch data has been issued, the data memory is cleared, i.e. no measurement data is present.

Table 10: Fetch Data command (Clear blocks are controlled by the microcontroller, grey blocks by the sensor).

4.8 ART Command

The ART (accelerated response time) feature can be activated by issuing the command in Table 11. After issuing the ART command the sensor will start acquiring data with a frequency of 4Hz.

The ART command is structurally similar to any other command in Table 9. Hence Section 4.6 applies for starting a measurement, Section 4.7 for reading out data and Section 4.9 for stopping the periodic data acquisition.

Command	Hex Code
Periodic Measurement with	0x2B32
ART	
1 2 3 4 5 6 7 8 9 1 2 3 4 S I2C Address WQ Comma I2C write header I2C I2C	nd MSB Command LSB

Table 11: Command for a periodic data acquisition with the ART feature (Clear blocks are controlled by the microcontroller, grey blocks by the sensor).

4.9 Break command / Stop Periodic Data Acquisition Mode

The periodic data acquisition mode can be stopped using the break command shown in Table 12. It is recommended to stop the periodic data acquisition prior to sending another command (except Fetch Data command) using the break command. Upon reception of the break command the sensor will abort the ongoing measurement and enter the single shot mode. This takes 1ms.

Command	Hex Code
Break	0x3093
1 2 3 4 5 7 8 1 2 3 4 S I2C Address Weiget Comman I2C write header I2C write header	d MSB Command LSB

Table 12: Break command (Clear blocks are controlled by the microcontroller, grey blocks by the sensor).

Į.

4.10 Reset

A system reset of the SHT85 can be generated externally by issuing a command (soft reset). Additionally, a system reset is generated internally during power-up. During the reset procedure the sensor will not process commands.

Interface Reset

If communication with the device is lost, the following signal sequence will reset the serial interface: While leaving SDA high, toggle SCL nine or more times. This must be followed by a Transmission Start sequence preceding the next command. This sequence resets the interface only. The status register preserves its content.

Soft Reset / Re-Initialization

The SHT85 provides a soft reset mechanism that forces the system into a well-defined state without removing the power supply. When the system is in idle state the soft reset command can be sent to the SHT85. This triggers the sensor to reset its system controller and reloads calibration data from the memory. In order to start the soft reset procedure the command as shown in Table 13 should be sent.

It is worth noting that the sensor reloads calibration data prior to every measurement by default.

Command	Hex Code
Soft Reset	0x30A2
1 2 3 4 5 6 7 8 9 1 2 3 4 S 12C Address W Comman 12C write header	s 6 7 8 9 10 11 12 13 14 15 19 17 19 d MSB Command LSB P 16-bit command

Table 13: Soft reset command (Clear blocks are controlled by the microcontroller, grey blocks by the sensor).

Reset through General Call

Additionally, a reset of the sensor can also be generated using the "general call" mode according to I2C-bus specification¹⁴. It is important to understand that a reset generated in this way is not device specific. All devices on the same I2C bus that support the general call mode will perform a reset. Additionally, this command only works when the sensor is able to process I2C commands. The appropriate command consists of two bytes and is shown in Table 14.

Command	Code
Address byte	0x00
Second byte	0x06
Reset command using the general call address	0x0006
1 2 3 4 5 6 7 8 S General Call Address General Call 1" byte -	9 1 2 3 4 5 6 7 8 9 Keset Command General Call 2 rd kyte

Table 14: Reset through the general call address (Clear blocks are controlled by the microcontroller, grey blocks by the sensor).

Hard Reset

A hard reset is achieved by switching the supply voltage to the VDD Pin off and then on again. In order to prevent powering the sensor over the ESD diodes, the voltage to pins 1 (SCL) and 4 (SDA) also needs to be removed.

4.11 Heater

The SHT85 is equipped with an internal heater, which is meant for plausibility checking only. The temperature increase achieved by the heater depends on various parameters and lies in the range of a few degrees centigrade. It can be switched on and off by command, see table below. The status is listed in the status register. After a reset the heater is disabled (default condition).

Command	Hex Code		
Command	MSB	LSB	
Heater Enable	0×30	6D	
Heater Disabled	0x30	66	
1 2 3 4 5 6 7 6 9 10 11 12 14 16 15 17 18 S I2C Address WW Command MSB Command LSB P P P 16-bit command 16-bit command 18 P			

Table 15: Heater command (Clear blocks are controlled by the microcontroller, grey blocks by the sensor).

4.12 Status Register

The status register contains information on the operational status of the heater, the alert mode and on the execution status of the last command and the last write sequence. The command to read out the status register is shown in Table 16 whereas a description of the content can be found in Table 17.

Table 16: Command to read out the status register (Clear blocks are controlled by the microcontroller, grey blocks by the sensor).

Bit	Field description	Default value
15	Alert pending status	°1'
	'0': no pending alerts	
	'1': at least one pending alert	
14	Reserved	'0'
13	Heater status	'0'
	'0' : Heater OFF	
	'1' : Heater ON	
12	Reserved	'0'
11	RH tracking alert	' 0
	'0' : no alert	
	'1' . alert	
10	T tracking alert	ʻ0'
	'0' : no alert	
	'1' . alert	
9:5	Reserved	'xxxxx'
4	System reset detected	· 1'
	'0': no reset detected since last 'clear	
	status register' command	
	'1': reset detected (hard reset, soft reset	
	command or supply fail)	
3:2	Reserved	'00'
1	Command status	'0'
	'0': last command executed successfully	
	'1': last command not processed. It was	
	either invalid, failed the integrated	
	command checksum	
0	Write data checksum status	ʻ0'
	'0': checksum of last write transfer was	
	correct	
	'1': checksum of last write transfer failed	

Table 17: Description of the status register.

Clear Status Register

All flags (Bit 15, 11, 10, 4) in the status register can be cleared (set to zero) by sending the command shown in Table 18.

Command	Hex Code
Clear status register	0x 30 41
1 2 3 4 5 6 7 8 1 2 3 4 5 6 S I2C Address WW Command N 1 2 1 2 3 4 5 6 L2C Address WW Command N 1	ASB Command LSB

Table 18: Command to clear the status register (Clear blocks are controlled by the microcontroller, grey blocks by the sensor).

4.13 Checksum Calculation

The 8-bit CRC checksum transmitted after each data word is generated by a CRC algorithm. Its properties are displayed in Table 19. The CRC covers the contents of the two previously transmitted data bytes. To calculate the checksum only these two previously transmitted data bytes are used.

Property	Value
Name	CRC-8
Width	8 bit
Protected data	read and/or write data
Polynomial	0x31 (x ⁸ + x ⁵ + x ⁴ + 1)
Initialization	0xFF
Reflect input	False
Reflect output	False
Final XOR	0x00
Examples	CRC (0xBEEF) = 0x92

Table 19: I2C CRC properties.

4.14 Conversion of Signal Output

Measurement data is always transferred as 16-bit values (unsigned integer). These values are already linearized and compensated for temperature and supply voltage effects. Converting those raw values into a physical scale can be achieved using the following formulas.

Relative humidity conversion formula (result in %RH):

$$RH = 100 \cdot \frac{S_{RH}}{2^{16} - 1}$$

Temperature conversion formula (result in °C & °F):

$$T [°C] = -45 + 175 \cdot \frac{S_{T}}{2^{16} - 1}$$
$$T [°F] = -49 + 315 \cdot \frac{S_{T}}{2^{16} - 1}$$

 S_{RH} and S_T denote the raw sensor output for humidity and temperature, respectively. The formulas work only correctly when S_{RH} and S_T are used in decimal representation.

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units	Comments
SCL clock frequency	fscL		0	-	1000	kHz	
Hold time (repeated) START condition	thd;sta	After this period, the first clock pulse is generated	0.24	-	-	μs	
LOW period of the SCL clock	t _{LOW}		0.53	-	-	μs	
HIGH period of the SCL clock	t _{ніgн}		0.26	-	-	μs	
SDA hold fime	4		0	-	250	ns	Transmitting data
SDA hold time	THD;DAT		0	-		ns	Receiving data
SDA set-up time	tsu;dat		100	-	-	ns	
SCL/SDA rise time	t _R		-	-	300	ns	
SCL/SDA fall time	t⊧		-	-	300	ns	
SDA valid time	tvd;dat		-	-	0.9	μs	
Set-up time for a repeated START condition	tsu;sta		0.26	-	-	μs	
Set-up time for STOP condition	tsu;sто		0.26	-	-	μs	
Capacitive load on bus line	CB		-	-	400	pF	
Low level input voltage	VIL		0	-	0.3xV _{DD}	V	
High level input voltage	ViH		0.7xV _{DD}	-	1xV _{DD}	V	
Low level output voltage	Vol	33 mA sink current	-	-	0.4	V	

4.15 Communication Timing

Table 20: Timing specifications for I2C communication, valid for T=-40°C ... 125°C and VDD = VDDmin... VDDmax. The nomenclature above is according to the I2C Specification (UM10204, Rev. 6, April 4, 2014).

Figure 5: Timing diagram for digital input/output pads. SDA directions are seen from the sensor. Bold SDA lines are controlled by the sensor, plain SDA lines are controlled by the micro-controller. Note that SDA valid read time is triggered by falling edge of preceding toggle.

www.sensirion.com / D1

Version 1.0 - November 2018

17/23

SENSIRION

5 Packaging

The SHT85 is supplied in a single-in-line pin type package. The SHT35-DIS sensor housing consists of an epoxy-based mold compound, see "Datasheet SHT3x-DIS" for more information. The sensor opening of the housing is protected by a PTFE membrane dedicated to protect the sensor opening from liquids and dust according to IP67, see "Datasheet Membrane Option" for more information. The sensor head is connected to the pins by a small bridge to minimize heat conduction and response times. The pins are soldered to the FR4 substrate by lead-free solder paste. The gold plated backside of the sensor head is connected to the VSS pin. A 100nF capacitor is mounted on the front side between VDD and VSS. The device is fully RoHS compliant – thus it is free of of Pb, Cd, Hg, Cr(6+), PBB and PBDE. All pins are Au plated to avoid corrosion. They can be soldered or mate with most 1.27 mm (0.05") sockets, for example: Preci-dip / Mill-Max R851-83-004-20-001 or similar. When the sensor is further processed by soldering, it should be ensured that the solder connections between pins and the SHT85 PCB are not melted.

5.1 Traceability

The SHT85 provides a device specific serial number, which can be read-out via the serial interface (I2C), see the command in Table 21. The Serial number allows an unambiguous identification of each individual device.

Table 21: Command to read out the Serial Number (Clear blocks are controlled by the microcontroller, grey blocks by the sensor.)

After issuing the measurement command and sending the ACK Bit the sensor needs the time $t_{IDLE} = 0.5ms$ to respond to the I2C read header with an ACK Bit. Hence it is recommended to wait $t_{IDLE} = 0.5ms$ before issuing the read header. The Get Serial Number command returns 2 words; every word is followed by a CRC Checksum. Together the 2 words (SNB_3 to SNB_0 in Table 21, SNB_0 is the LSB, whereas SNB_3 is the MSB) constitute a unique serial number with a length of 32 bit. This serial number can be used to identify each sensor individually.

5.2 Package Outline

Version 1.0 - November 2018

6 Shipping Package

SHT85 are shipped in 32mm tape at 50pcs each. Dimensions of packaging tape are given in Figure 7. All tapes have a 10 pockets empty leader tape (first pockets of the tape) and a 10 pockets empty trailer tape (last pockets of the tape).

ł

.

Figure 7 Tape configuration and unit orientation within tape, dimensions in mm (1mm = 0.039inch).

7 Quality

Qualification of the SHT85 is performed based on JEDEC guidelines. Furthermore, the SHT3x-DIS component qualification is based on the AEC Q 100 qualification test method.

7.1 Material Contents

The device is fully RoHS compliant, e.g. free of Pb, Cd, and Hg.

8 Ordering Information

The SHT85 can be ordered in tape and reel packaging, see Table 22. The reels are sealed into antistatic ESD bags.

Sensor Type	Packaging	Quantity	Order Number
SHT85	Tape Stripes	50	3.000.074

Table 22 SHT85 ordering information.

9 Further Information

For more in-depth information on the SHT85 and its application please consult the documents in Table 23. Parameter values specified in the datasheet overrule possibly conflicting statements given in references cited in this datasheet.

Document Name	Description	Source
SHT85 Shipping Package	Describes the standard shipping package	Available upon request.
Handling of SMD Packages Humidity Sensors	Assembly Guide	Available for download at the Sensirion humidity sensors download center: www.sensirion.com/humidity-download
Datasheet Humidity Sensor SHT3x Digital	All specifications of the SHT35-DIS	Available for download at the Sensirion humidity sensors download center: www.sensirion.com/humidity-download
Datasheet Humidity Sensor Filter Membrane SHT3x	All relevant specifications of the filter membrane	Available for download at the Sensirion humidity sensors download center: www.sensirion.com/humidity-download
Handling Instructions Humidity Sensors	Guidelines for proper handling of SHTxx humidity sensors	Available for download at the Sensirion humidity sensors download center: www.sensirion.com/humidity-download
Specification Statement Humidity Sensors	Definition of sensor specifications.	Available for download at the Sensirion humidity sensors download center: www.sensirion.com/humidity-download

Table 23 Documents containing further information relevant for the SHT85.

10 Important Notices

10.1 Warning, Personal Injury

Do not use this product as safety or emergency stop devices or in any other application where failure of the product could result in personal injury. Do not use this product for applications other than its intended and authorized use. Before installing, handling, using or servicing this product, please consult the data sheet and application notes. Failure to comply with these instructions could result in death or serious injury.

If the Buyer shall purchase or use SENSIRION products for any unintended or unauthorized application, Buyer shall defend, indemnify and hold harmless SENSIRION and its officers, employees, subsidiaries, affiliates and distributors against all claims, costs, damages and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if SENSIRION shall be allegedly negligent with respect to the design or the manufacture of the product.

10.2 ESD Precautions

The inherent design of this component causes it to be sensitive to electrostatic discharge (ESD). To prevent ESD-induced damage and/or degradation, take customary and statutory ESD precautions when handling this product. See application note "ESD, Latchup and EMC" for more information.

10.3 Warranty

SENSIRION warrants solely to the original purchaser of this product for a period of 12 months (one year) from the date of delivery that this product shall be of the quality, material and workmanship defined in SENSIRION's published specifications of the product. Within such period, if proven to be defective, SENSIRION shall repair and/or replace this product, in SENSIRION's discretion, free of charge to the Buyer, provided that:

· notice in writing describing the defects shall be given to SENSIRION within fourteen (14) days after their appearance;

such defects shall be found, to SENSIRION's reasonable satisfaction, to have arisen from SENSIRION's faulty design, material, or workmanship;
 the defective product shall be returned to SENSIRION's factory at the Buyer's expense; and

. the warranty period for any repaired or replaced product shall be limited to the unexpired portion of the original period.

This warranty does not apply to any equipment which has not been installed and used within the specifications recommended by SENSIRION for the intended and proper use of the equipment. EXCEPT FOR THE WARRANTIES EXPRESSLY SET FORTH HEREIN, SENSIRION MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THE PRODUCT. ANY AND ALL WARRANTIES, INCLUDING WITHOUT LIMITATION, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE EXPRESSLY EXCLUDED AND DECLINED.

SENSIRION is only liable for defects of this product arising under the conditions of operation provided for in the data sheet and proper use of the goods. SENSIRION explicitly disclaims all warranties, express or implied, for any period during which the goods are operated or stored not in accordance with the technical specifications.

SENSIRION does not assume any liability arising out of any application or use of any product or circuit and specifically disclaims any and all liability, including without limitation consequential or incidental damages. All operating parameters, including without limitation recommended parameters, must be validated for each customer's applications by customer's technical experts. Recommended parameters can and do vary in different applications.

SENSIRION reserves the right, without further notice, (i) to change the product specifications and/or the information in this document and (ii) to improve reliability, functions and design of this product.

Copyright[®] 2018, by SENSIRION. CMOSens[®] is a trademark of Sensirion All rights reserved

11 Revision History

Release Date	Version	Page(s)	Changes
06. November 2018	1.0	All	Initial Release

12 Headquarters and Subsidiaries

SENSIRION AG	Sensirion Inc. USA	Sensirion Korea Co. Ltd.
Laubisruetistr. 50	phone: +1 312 690 5858	phone: +82 31 337 7700~3
CH-8712 Staefa ZH	info-us@sensirion.com	info-kr@sensirion.com
Switzerland	www.sensirion.com	www.sensirion.co.kr
phone: +41 44 306 40 00	Sensirion Japan Co. Ltd.	Sensirion China Co. Ltd.
fax: +41 44 306 40 30	phone: +81 3 3444 4940	phone: +86 755 8252 1501
info@sensirion.com	info-jp@sensirion.com	info-cn@sensirion.com
www.sensirion.com	www.sensirion.co.jp	www.sensirion.com.cn/
Sensirion Taiwan Co. Ltd. phone: +41 44 306 40 00 info@sensirion.com	To find your local representative, p	lease visit www.sensirion.com/contact

www.sensirion.com / D1

16.5 LCD Display ERM1602-6 Series – HD44780

Character Module Datasheet ERM1602-6 Series

ERM1602-6 Series

Character Module Datasheet

EastRising Technology Co., Limited

Attention:

- A. Some specifications of IC are not listed in this datasheet. Please refer to the IC datasheet for more details.
- B. The related documents for interfacing, demo code, ic datasheet are all available, please download from our web.
- C. Please pay more attention to "INSPECTION CRITERIA" in this datasheet. We assume you already agree with these criterions when you place an order with us. No more recommendations.

REV	DESCRIPTION	RELEASE DATE
.1.0	Preliminary Release	Jun-25-2013
1.1	Add Power Supply 3.3V	Aug-22-2014

URL: <u>www.buydisplay.com</u>

CONTENTS

1. ORDERING INFORMATION	04
.1.1 ERM1602-6 Series Table .1.2 ERM1602-6 Series Image	0,4 05,
2. SPECIFICATION	06
 2.1 Display Specification	06 06 06 06
3. OUTLINE DRAWING	07
4. ELECTRICAL SPEC	08
4.1 Pin Configuration	08 09 09
5. INSPECTION CRITERIA	10
 5.1 Acceptable Quality Level	1.0 1.0 1.0 1.1 1.3 1.4
6. PRECAUTIONS FOR USING	16
6.1 Handling Precautions 6.2 Power Supply Precautions 6.3 Operating Precautions 6.4 Mechanical/Environmental Precautions 6.5 Storage Precautions 6.6 Others	16 17 17 17 17 17

URL: www.buydisplay.com

7. USING LCD MODULES	18
7.1 Liquid Crystal Display Modules	18
7.2 Installing LCD Modules	1.8
7.3 Precaution for Handling LCD Modules	19
7.4 Electro-Static Discharge Control	19
7.5 Precaution for Soldering to EastRising LCM	19
7.6 Precaution for Operation	20
7.7 Limited Warranty	20
7.8 Return Policy	20

URL: www.buydisplay.com

1. ORDERING INFORMATION

.1.1 ERM1602-6 Series Table

*The number of series table is in accordance with number of the below series image 1.2.

* Some products in below table may not sell in our online store (buydispaly.com), please contact our sales by email (sales@buydisplay.com) for price or purchase.

No.	Part Number	LCD Type	Backlight Color	Graphic & Font Color	Background Color
1	ERM1602SYG-6	STN Positive	Yellow Green Color	Dark Blue	Yellow Green Color
2	ERM1602SBS-6	STN Negative Blue	White Color	White Color	Blue Color
3	ERN1602FS-6	FSTN Positive	White Color	Black Color	White Color
4	ERM1602FR-6	FSTN Positive	Red Color	Black Color	Red Color
5	ERM1602FG-6	FSTN Positive	Green Color	Black Color	Green Color
6	ERM1602FB-6	FSTN Positive	Blue Color	Black Color	Blue Color
7	ERM1602FP-6	FSTN Positive	Purple Color	Black Color	Purple Color
8	ERM1602FAM-6	FSTN Positive	Amber Color	Black Color	Amber Color
9	ERM1602DNYG-6	FFSTN Negative	Yellow Green Color	Yellow Green Color	Black Color
10	ERM1602DNS-6	FFSTN Negative	White Color	White Color	Black Color
11	ERM1602DNR-6	FFSTN Negative	Red Color	Red Color	Black Color
12	ERM1602DNG-6	FFSTN Negative	Green Color	Green Color	Black Color
13	ERM1602DNB-6	FFSTN Negative	Blue Color	Blue Color	Black Color
14	ERM1602DNP-6	FFSTN Negative	Purple Color	Purple Color	Black Color
15	ERM1602DNAM-6	FFSTN Negative	Amber Color	Amber Color	Black Color

1.2 ERM1602-6 Series Image

*The number of series image is in accordance with number of the above series table 1.1.

* Some products in below table may not sell in our online store (buydispaly.com), please contact our sales by email (sales@buydisplay.com) for price or purchase.

URL: www.buydisplay.com

Document Name: ERM1602-6 Series Datasheet-Rev1.1

Page: 5 of 20

2. SPECIFICATION

2.1 Display Specification

JTEM STANDARD VALUE		UNIT
Resolution	.16 Characters x 2 Lines	
Display Connector	Pin Header, 16 Pins	
Operating Temperature	-20 ~ +70	Ĵ.
Storage Temperature	-30 ~ +80	°C.
Touch Panel Optional	N/A	
Font Chip Optional	,N/A	
*Sunlight Readable	.No1,No3,No4,No5,No6,No7,No8	

*Number of sunlight readable is from 1.1 ERM1602-6 Series Table of the datasheet.

2.2 Mechanical Specification

JTEM	STANDARD VALUE	UNIT
Outline Dimension	80.0(W) ×36.0(H) × 13.5(T) (MAX)	лт
.Visual Area	64.5(W) × 14.5(H)	тт
Active Area	55.45(W) × 10.85(H)	тт
Character Size	2.95(W) × 5.15(H)	mm
Dot Size	.0.55×0.60	тт
Dot Pitch	0.60 ×0.65	mm
Net Weight	.32.0 ± 15% grams (typical)	g

2.3 Electrical Specification

JTEM	STANDARD VALUE	UNIT
JC Package	COB	
Controller	HD44780 or Equivalent KS0066 or SPLC780	
Interface	.6800 8-bit Parallel, 6800 4-bit Parallel	

2.4 Optical Specification

JTEM	STANDARD VALUE	UNIT
LCD Type	Refer to 1.1 ERM1602-6 Series Table	
Backlight Color	Refer to 1.1 ERM1602-6 Series Table	t.
Viewing Direction	6:00	.Clock
LCD Duty	.1/16	Duty
LCD Bias	.1/5	Bias

URL: <u>www.buydisplay.com</u>

4. ELECTRICAL SPEC

4.1 Pin Configuration

Pin No	Pin Name	Descriptions
1	VSS	Ground ,0V
2	VDD	Logic Power Supply
3	V0	Operating voltage for LCD
4	RS	Data / Instruction Register Select (H: Data Signal, L: Instruction Signal)
5	R/W	Read / Write (H: Read Mode, L: Write Mode)
6	E	Enable Signal
7	DB0	Data Bit 0
8	DB1	Data Bit 1
9	B2	Data Bit 2
10	DB3	Data Bit 3
11	DB4	Data Bit 4
12	DB5	Data Bit 5
13	DB6	Data Bit 6
14	DB7	Data Bit 7
15	LED_A	Backlight Anode
16	LED_K	Backlight Cathode

4.2 Absolute Maximum Ratings

JTEM	SYMBOL	MIN.	TYP.	MAX.	UNIT
Power Supply for Logic	VDD-VSS	-0.3	-	+7.0	N.
Power Supply for LCD	.VLCD	VDD-15	-	VDD+0.3	V
Input Voltage	.VIN	-0.3	-	VDD+0.3	V
Supply Current for Backlight	JLED	-	-	25	mA

4.3 Electrical Characteristics

JTEM	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Dewer Supply for LCM	.VDD-VSS		4.8	5.0	5.2	V
Power Supply for LOW			3.0	3.3	3.6	
	.VIL	L Level	-0.2	-	1	V
Input Voltage	.VIH	H Level	VDD-1.0	-	VDD	V
LCD Driving Voltage	VDD-V0	-	4.5	4.8	5.1	V
Supply Current for LCM	M IDD	VDD=5.0V	-	-	1500	
Supply Current for LCIM		VDD=3.3V	-	-	1250	uA
Supply Current for Backlight	ILED	-	-	15	-	mA

URL: <u>www.buydisplay.com</u>

Document Name: ERM1602-6 Series Datasheet-Rev1.1

Page: 9 of 20

5. INSPECTION CRITERIA

5.1 Acceptable Quality Level

Each lot should satisfy the quality level defined as follows

PARTITION	AQL	DEFINITION
A. Major	0.4%	Functional defective as product
B. Minor	.1.5%	Satisfy all functions as product but not satisfy cosmetic stanard

5.2 Definition of Lot

One lot means the delivery quantity to customer at one time.

- 5.3 Condition of Cosmetic Inspection
- INSPECTION AND TEST

 FUNCTION TEST
 APPEARANCE INSPECTION
 PACKING SPECIFICTION
- INSPECTION CONDITION
 - Put under the lamp (20W2) at a distance 100mm from
 - Tilt upright 45 degree by the front (back) to inspect LCD appearance.
- ♦ AQL INSPECTION LEVEL
 - SAMPLING METHOD: MIL-STD-105D
 - SAMPLING PLAN: SINGLE
 - MAJOR DEFECT: 0.4% (MAJOR)
 - MINOR DEFECT: 1.5% (MINOR)
 - GENERAL LEVEL: II/NORMAL

Page: 10 of 20

5.4 Module Cosmetic Criteria

NO.	ltem	Judgment Criterion	Partition
1	Difference in Spec.	None allowed	Major
2	Pattern Peeling	No substrate pattern peeling and floating	Major
3	Soldering defects	No soldering missing	Major
		No soldering bridge	Major
		No cold soldering	Minor
4	Resist flaw on substrate	Invisible copper foil(# 0.5mm or more)on substrate pattern	Minor
5	Accretion of metallic	No soldering dust	Minor
	Foreign matter	No accretion of metallic foreign matters(Not exceed ⊄ 0.2mm)	
6	Stain	No stain to spoil cosmetic badly	Minor
7	Plate discoloring	No plate fading, rusting and discoloring	Minor
8	Solder amount	a. Soldering side of PCB	Minor
	1.Lead parts	Solder to form a'Filet' all around the lead. Solder should not hide the lead form perfectly.(too much) b.Components side (In case of 'Through Hole PCB') Solder to reach the Components side of PCB	Minor
	2.Hat packages	Lead form to be assume over Solder.	Minor
	3.Chips	(3/2) H≧h≧(1/2)H	Minor

URL: www.buydisplay.com

Document Name: ERM1602-6 Series Datasheet-Rev1.1

Page: 11 of 20

F Eas	TRising [®]	Character Module Datasheet ERM1602-6 Se	ries
9	Backlight defects	 Light fails or flickers.(Major) Color and luminance do not correspond to specifications. (Major) Exceeds standards for display's blemishes, foreign matter, dark lines or scratches.(Minor) 	See list ←
10	PCB defects	Oxidation or contamination on connectors.* 2. Wrong parts, missing parts, or parts not in specification.* 3.Jumpers set incorrectly.(Minor) 4.Solder(if any)on bezel,LED pad,zebra pad,or screw hole pad is not smooth.(Minor) *Minor if display functions correctly.Major if the display fails.	See list ←
11	Soldering defects	 Unmelted solder paste. Cold solder joints,missing solder connections,or oxidation.* Solder bridges causing short circuits.* Residue or solder balls. Solder flux is black or brown. *Minor if display functions correctly.Major if the display fails. 	Minor

5.5 Screen Cosmetic Criteria (Non-Operating)

No.	Defect	Judgment Criterion	Partition			
1	Spots	In accordance with Screen Cosme	Minor			
2	Lines	In accordance with Screen Cosme	etic Criteria (Operation) No.2.	Minor		
3	Bubbles in			Minor		
	Polarizer	Size: d mm	Acceptable Qty in active area			
		d≦0.3	Disregard]		
		0.3 <d≦1.0< td=""><td>3</td><td></td></d≦1.0<>	3			
		1.0 <d≦1.5 1<="" td=""><td></td></d≦1.5>				
		1.5 <d< td=""><td>0</td><td></td></d<>	0			
4	Scratch	In accordance with spots and lines	s operating cosmetic criteria, When the	Minor		
		light reflects on the panel surface, the scratches are not to be remarkable.				
5	Allowable density	Above defects should be separated more than 30mm each other.				
6	Coloration	Not to be noticeable coloration in	Minor			
		Back-lit type should be judged with back-lit on state only.				
7	Contamination	Not to be noticeable.		Minor		

URL: www.buydisplay.com

Document Name: ERM1602-6 Series Datasheet-Rev1.1

Page: 13 of 20

buydisplay.com

	o Screen Cosmetic (chiena (Operating)				
No.	Defect	Judgmei	nt Criterion	Partition		
1	Spots	A) Clear		Minor		
		Size:d mm	Acceptable Qty in active area			
		d≦0.1	Disregard			
		0.1 <d≦0.2< th=""><th>6</th><th></th></d≦0.2<>	6			
		0.2 <d≦0.3< th=""><th>2</th><th></th></d≦0.3<>	2			
		0.3 <d< th=""><th>0</th><th></th></d<>	0			
		Note: Including pin holes and defect	ive dots which must be within one pixel			
		Size.				
		B) Unclear				
		Size:d mm	Acceptable Qty in active area			
		d≦0.2	Disregard			
		0.2 <d≦0.5< th=""><th>6</th><th></th></d≦0.5<>	6			
		0.5 <d≦0.7< th=""><th>2</th><th></th></d≦0.7<>	2			
		0.7 <d< th=""><th>0</th><th></th></d<>	0			
2	Lines	A) Clear		Minor		
		L 5.0 (0)				
		20 (6)	See No 1			
		2.0 (0)	See NO.1			
		0.02 0.05	0.1			
		Noto: () Accontable Oty in active a	r02			
		Note. () – Acceptable Qty in active area				
		L - Length (mm)				
		vv -vvidtn(mm)				
		∞-Disregard				
		B) Unclear				
		L 10.0	(0)			
		∞ (6)				
		2.0	See No.1			
		0.05 0	.3 0.5			
	'Clear' = The shade and size are not changed by Vo.					
	'Unclear' = The shade and size are changed by Vo.					

Page: 14 of 20

No	Defect	luden aut Oritarian	Dertitien			
NO.	Defect	Judgment Criterion	Partition			
3	Rubbing line	Not to be noticeable.				
4	Allowable density	Above defects should be separated more than 10mm each other.				
5	Rainbow	Not to be noticeable.				
6	Dot size	To be 95%~105% of the dot size (Typ.) in drawing.	Minor			
		Partial defects of each dot (ex.pin-hole) should be treated as'spot'.				
		(see Screen Cosmetic Criteria (Operating) No.1)				
7	Brightness	Brightness Uniformity must be BMAX/BMIN≦2 Minor				
	(only back-lit	- BMAX :Max.value by measure in 5 points				
	Module)	- BMIN : Min.value by measure in 5 points				
		Divide active area into 4 vertically and horizontally.				
		Measure 5 points shown in the following figure.				
		• •				
0	Contract	Contract Uniformity must be DmAX/DMINI≤2 Minor				
0	Uniformity	Contrast onnormity must be $BIRAA/BIVIN = 2$				
	Uniformity	Measure 5 points shown in the following figure.				
		Dashed lines divide active area into 4 vertically and horizontally.				
		Measuring points are located at the inter-sections of dashed line.				
		$-\underline{-\overline{\psi}-\overline{1}-\overline{\psi}-\overline{1}}$				
		Note: BMAX – Max.value by measure in 5 points.				
		BMIN – Min.value by measure in 5 points.				
		O – Measuring points in ¢10mm.				
Nete:						
Note.						
 (1) Size . u-(iong length + Short length)/2 (2) The limit complex for each item have priority 						
 (2) The limit samples for each field from by item, but if the number of defects is defined in above table, the total (2) Complexed defects are defined item by item, but if the number of defects is defined in above table, the total 						
(3) 00	(3) Complexed defects are defined item by item, but if the number of defects is defined in above table, the total					
number should not exceed 10.						

(4) In case of 'concentration', even the spots or the lines of 'disregarded' size should not be allowed. Following three situations

Should be treated as 'concentration'.

- -7 or over defects in circle of ¢5mm.
- -10 or over defects in circle of ¢10mm
- -20 or over defects in circle of ¢20mm

6. PRECAUTIONS FOR USING

...6.1 Handling Precautions

- This device is susceptible to Electro-Static Discharge (ESD) damage. Observe Anti-Static precautions.
- EastRising display panel is made of glass. Do not subject it to a mechanical shock by dropping it or impact.
- If EastRising display panel is damaged and the liquid crystal substance leaks out, be sure not to get any in your mouth. If the substance contacts your skin or clothes, wash it off using soap and water.
- Do not apply excessive force to the EastRising display surface or the adjoining areas since this may cause the color tone to vary.
- The polarizer covering the EastRising display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.
- If EastRising display surface becomes contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If it is heavily contaminated, moisten cloth with one of the following Isopropyl or alcohol.
- Solvents other than those above-mentioned may damage the polarizer. Especially, do not use the Water.
- Exercise care to minimize corrosion of the electrode. Corrosion of the electrodes is accelerated by water droplets, moisture condensation or a current flow in a high-humidity environment.
- Install the EastRising LCD Module by using the mounting holes. When mounting the LCD module make sure it is free of twisting, warping and distortion. In particular, do not forcibly pull or bend the cable or the backlight cable.
- Do not attempt to disassemble or process EastRising LCD module.
- NC terminal should be open. Do not connect anything.
- If the logic circuit power is off, do not apply the input signals.
- To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
 - -Be sure to ground the body when handling EastRising LCD modules.
 - -Tools required for assembling, such as soldering irons, must be properly grounded.
 - -To reduce the amount of static electricity generated, do not conduct assembling and other work under dry conditions.
 - -The LCD module is coated with a film to protect the display surface. Exercise care when peeling off this protective film since static electricity may be generated.

URL: <u>www.buydisplay.com</u>

Document Name: ERM1602-6 Series Datasheet-Rev1.1

Page: 16 of 20

6.2 Power Supply Precautions

.◆ Identify and, at all times, observe absolute maximum ratings for both logic and LC drivers. Note that there is some variance between models.

- Prevent the application of reverse polarity to VDD and VSS, however briefly.
- Use a clean power source free from transients. Power-up conditions are occasionally jolting and may
 exceed the maximum ratings of EastRising modules.
- The VDD power of EastRising module should also supply the power to all devices that may access the display. Don't allow the data bus to be driven when the logic supply to the module is turned off.

6.3 Operating Precautions

- DO NOT plug or unplug EastRising module when the system is powered up.
- Minimize the cable length between EastRising module and host MPU.
- For models with backlights, do not disable the backlight by interrupting the HV line. Unload inverters produce voltage extremes that may arc within a cable or at the display.
- Operate EastRising module within the limits of the modules temperature specifications.

6.4 Mechanical/Environmental Precautions

- Improper soldering is the major cause of module difficulty. Use of flux cleaner is not recommended as they may seep under the electrometric connection and cause display failure.
- Mount EastRising module so that it is free from torque and mechanical stress.
- Surface of the LCD panel should not be touched or scratched. The display front surface is an easily scratched, plastic polarizer. Avoid contact and clean only when necessary with soft, absorbent cotton dampened with petroleum benzene.
- Always employ anti-static procedure while handling EastRising module.
- Prevent moisture build-up upon the module and observe the environmental constraints for storage tem
- Do not store in direct sunlight
- If leakage of the liquid crystal material should occur, avoid contact with this material, particularly ingestion.
 If the body or clothing becomes contaminated by the liquid crystal material, wash thoroughly with water and soap

6.5 Storage Precautions

. When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps. Keep EastRising modules in bags (avoid high temperature / high humidity and low temperatures below 0C Whenever possible, EastRising LCD modules should be stored in the same conditions in which they were shipped from our company.

6.6 Others

Liquid crystals solidify under low temperature (below the storage temperature range) leading to defective orientation or the generation of air bubbles (black or white). Air bubbles may also be generated if the module is subject to a low temperature.

If EastRising LCD modules have been operating for a long time showing the same display patterns, the display patterns may remain on the screen as ghost images and a slight contrast irregularity may also

URL: www.buydisplay.com Document Name: ERM1602-6 Series Datasheet-Rev1.1

Page: 17 of 20

ouydisplay.com

appear. A normal operating status can be regained by suspending use for some time. It should be noted that this phenomenon does not adversely affect performance reliability.

To minimize the performance degradation of the LCD modules resulting from destruction caused by static electricity etc., exercise care to avoid holding the following sections when handling the modules.

-Exposed area of the printed circuit board.

-Terminal electrode sections.

7. USING LCD MODULES

7.1 Liquid Crystal Display Modules

EastRising LCD is composed of glass and polarizer. Pay attention to the following items when handling.

- Please keep the temperature within specified range for use and storage. Polarization degradation, bubble generation or polarizer peel-off may occur with high temperature and high humidity.
- Do not touch, push or rub the exposed polarizers with anything harder than an HB pencil lead (glass, tweezers, etc.).
- N-hexane is recommended for cleaning the adhesives used to attach front/rear polarizers and reflectors made of organic substances which will be damaged by chemicals such as acetone, toluene, ethanol and isopropylalcohol.
- When EastRising display surface becomes dusty, wipe gently with absorbent cotton or other soft material like chamois soaked in petroleum benzin. Do not scrub hard to avoid damaging the display surface.
- Wipe off saliva or water drops immediately, contact with water over a long period of time may cause deformation or color fading.
- Avoid contacting oil and fats.
- Condensation on the surface and contact with terminals due to cold will damage, stain or dirty the polarizers. After products are tested at low temperature they must be warmed up in a container before coming is contacting with room temperature air.
- Do not put or attach anything on EastRising display area to avoid leaving marks on.
- Do not touch the display with bare hands. This will stain the display area and degradate insulation between terminals (some cosmetics are determinated to the polarizers).
- As glass is fragile. It tends to become or chipped during handling especially on the edges. Please avoid dropping or jarring.

7.2 Installing LCD Modules

- Cover the surface with a transparent protective plate to protect the polarizer and LC cell.
- When assembling the LCM into other equipment, the spacer to the bit between the LCM and the fitting plate should have enough height to avoid causing stress to the module surface, refer to the individual specifications for measurements. The measurement tolerance should be±0.1mm.

URL: www.buydisplay.com

buydisplay.com

- 7.3 Precaution for Handling LCD Modules Since EastRising LCM has been assembled and adjusted with a high degree of precision; avoid applying excessive shocks to the module or making any alterations or modifications to it.
- Do not alter, modify or change the shape of the tab on the metal frame.
- Do not make extra holes on the printed circuit board, modify its shape or change the positions of components to be attached.
- Do not damage or modify the pattern writing on the printed circuit board.
- Absolutely do not modify the zebra rubber strip (conductive rubber) or heat seal connector.
- Except for soldering the interface, do not make any alterations or modifications with a soldering iron.
- Do not drop, bend or twist EastRising LCM.
- 7.4 Electro-Static Discharge Control

Since this module uses a CMOS LSI, the same careful attention should be paid to electrostatic discharge as for an ordinary CMOS IC.

- Make certain that you are grounded when handing LCM.
- Before remove LCM from its packing case or incorporating it into a set, be sure the module and your body have the same electric potential.
- When soldering the terminal of LCM, make certain the AC power source for the soldering iron does not leak.
- When using an electric screwdriver to attach LCM, the screwdriver should be of ground potentiality to minimize as much as possible any transmission of electromagnetic waves produced sparks coming from the commutator of the motor.
- As far as possible make the electric potential of your work clothes and that of the work bench the ground potential.
- To reduce the generation of static electricity be careful that the air in the work is not too dried. A relative humidity of 50%-60% is recommended.

7.5 Precaution for Soldering to EastRising LCM

- Observe the following when soldering lead wire, connector cable and etc. to the LCM.
 Soldering iron temperature : 280°C ±10°C
 - -Soldering time: 3-4 sec.
 - -Solder: eutectic solder.

If soldering flux is used, be sure to remove any remaining flux after finishing to soldering operation. (This does not apply in the case of a non-halogen type of flux.) It is recommended that you protect the LCD surface with a cover during soldering to prevent any damage due to flux spatters.

- When soldering the electroluminescent panel and PC board, the panel and board should not be detached more than three times. This maximum number is determined by the temperature and time conditions mentioned above, though there may be some variance depending on the temperature of the soldering iron.
- When remove the electroluminescent panel from the PC board, be sure the solder has completely melted, the soldered pad on the PC board could be damaged.

URL: <u>www.buydisplay.com</u>

Document Name: ERM1602-6 Series Datasheet-Rev1.1

Page: 19 of 20

7.6 Precaution for Operation

- Viewing angle varies with the change of liquid crystal driving voltage (VO). Adjust VO to show the best contrast.
- Driving the EastRising LCD in the voltage above the limit shortens its life.
- Response time is greatly delayed at temperature below the operating temperature range. However, this
 does not mean the LCD will be out of the order. It will recover when it returns to the specified temperature
 range.
- If EastRising display area is pushed hard during operation, the display will become abnormal. However, it
 will return to normal if it is turned off and then back on.
- Condensation on terminals can cause an electrochemical reaction disrupting the terminal circuit. Therefore, it must be used under the relative condition of 40°C, 50% RH.
- When turning the power on, input each signal after the positive/negative voltage becomes stable.

7.7 Limited Warranty

.Unless agreed between EastRising and customer, EastRising will replace or repair any of its LCD modules which are found to be functionally defective when inspected in accordance with EastRising LCD acceptance standards (copies available upon request) for a period of one year from date of shipments. Cosmetic/visual defects must be returned to EastRising within 90 days of shipment. Confirmation of such date shall be based on freight documents. The warranty liability of EastRising limited to repair and/or replacement on the terms set forth above. EastRising will not be responsible for any subsequent or consequential events.

7.8 Return Policy

No warranty can be granted if the precautions stated above have been disregarded. The typical examples of violations are:

-Broken LCD glass.

-PCB eyelet damaged or modified.

-PCB conductors damaged.

-Circuit modified in any way, including addition of components.

-PCB tampered with by grinding, engraving or painting varnish.

-Soldering to or modifying the bezel in any manner.

Module repairs will be invoiced to the customer upon mutual agreement. Modules must be returned with sufficient description of the failures or defects. Any connectors or cable installed by the customer must be removed completely without damaging the PCB eyelet's, conductors and terminals

That's the end of the datasheet

URL: www.buydisplay.com

Document Name: ERM1602-6 Series Datasheet-Rev1.1

Page: 20 of 20